Source Code
Overview
HYPE Balance
HYPE Value
$0.00Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
32790 | 139 days ago | Contract Creation | 0 HYPE |
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
MultiAssetAtomicSolverRedeemUCP
Compiler Version
v0.8.25+commit.b61c2a91
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: Apache-2.0 pragma solidity 0.8.25; import { IAtomicSolver } from "../IAtomicSolver.sol"; import { FixedPointMathLib } from "@solmate/utils/FixedPointMathLib.sol"; import { SafeTransferLib } from "@solmate/utils/SafeTransferLib.sol"; import { ERC20 } from "@solmate/tokens/ERC20.sol"; import { TellerWithMultiAssetSupport } from "src/base/Roles/TellerWithMultiAssetSupport.sol"; import { AccountantWithRateProviders } from "src/base/Roles/AccountantWithRateProviders.sol"; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol"; import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol"; import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; interface IAtomicQueueUCP { function solve( ERC20 offer, ERC20 want, address[] calldata users, bytes calldata runData, address solver, uint256 clearingPrice ) external; } contract MultiAssetAtomicSolverRedeemUCP is Ownable, IAtomicSolver { using SafeTransferLib for ERC20; using FixedPointMathLib for uint256; /** * @notice The Solve Type, used in `finishSolve` to determine the logic used. * @notice P2P Solver wants to swap share.asset() for user(s) shares * @notice REDEEM Solver needs to redeem shares, then can cover user(s) required assets. * for this solver to be compatible with first two versions of queue, this is needed to be able to encode the data * only redeem is used in this solver */ enum SolveType { P2P, REDEEM } //============================== ERRORS =============================== error MultiAssetAtomicSolverRedeem___WrongInitiator(); error MultiAssetAtomicSolverRedeem___AlreadyInSolveContext(); error MultiAssetAtomicSolverRedeem___FailedToSolve(); error MultiAssetAtomicSolverRedeem___SolveMaxAssetsExceeded(uint256 actualAssets, uint256 maxAssets); error MultiAssetAtomicSolverRedeem___BoringVaultTellerMismatch(address vault, address teller); error MultiAssetAtomicSolverRedeem___InsufficientAssetsRedeemed(uint256 redeemedAmount, uint256 requiredAmount); error MultiAssetAtomicSolverRedeem___MismatchedArrayLengths(); error MultiAssetAtomicSolverRedeem___DuplicateWantAsset(address wantAsset); error MultiAssetAtomicSolverRedeem___GlobalSlippageThresholdExceeded( int256 globalSlippagePriceMinimum, int256[] balanceDeltas, int256 actualSlippage ); error MultiAssetAtomicSolverRedeem___OnlyRedeemAllowed(); error MultiAssetAtomicSolverRedeem___InvalidCaller(); error MultiAssetAtomicSolverRedeem___OnlyQueue(address caller, address queue); error MultiAssetAtomicSolverRedeem___InsufficientOfferAmount( uint256 offerNeeded, uint256 currentBalance, uint256 maxAllowableOfferAmountFromSolver ); // Updated struct to hold data for each want asset struct WantAssetData { ERC20 asset; // The desired asset by the users uint256 minimumAssetsOut; // a slippage control at the asset level uint256 maxAssets; // the maximum amount of assets to be redeemed for this asset // the amount of assets that will be redeemed in excess of user redemptions (can be 0) uint256 excessAssetAmount; // if true, will use all the initial solver balance in that asset first bool useSolverBalanceFirst; address[] users; // uniform clearing price for all users uint256 clearingPriceForAsset; // the maximum amount of offer asset from solver EOA balance that can be used to redeem this asset uint256 maxAllowableOfferAmountFromSolver; } IAtomicQueueUCP public immutable queue; mapping(address => bool) public isApprovedSolver; constructor(address _owner, IAtomicQueueUCP _queue, address[] memory approvedSolvers) Ownable(_owner) { queue = _queue; for (uint256 i; i < approvedSolvers.length;) { isApprovedSolver[approvedSolvers[i]] = true; unchecked { ++i; } } } //============================== SOLVE FUNCTIONS =============================== /** * @notice This function is used to solve for multiple assets in a single transaction * @notice Solvers should order the want assets in a way that they use their own balances (if any do so) first * @notice and then use the excess offer tokens to redeem the remaining assets last to minimize revert chances * @notice global slippage check uses exchange rate and rate providers and account for all want assets provided plus * vault tokens * @param offer the ERC20 asset sent to the solver * @param wantAssets an array of WantAssetData structs, each containing the desired asset and its users * @param teller the TellerWithMultiAssetSupport contract * @param globalSlippagePriceMinimum the solver sender's global slippage price minimum across all assets (in terms * of the base asset) * @param redeemCurrencyForExcessOffer the address to use as redeem token for excess offer */ function multiAssetRedeemSolve( ERC20 offer, WantAssetData[] calldata wantAssets, TellerWithMultiAssetSupport teller, int256 globalSlippagePriceMinimum, address redeemCurrencyForExcessOffer ) external { if (!isApprovedSolver[msg.sender]) revert MultiAssetAtomicSolverRedeem___InvalidCaller(); AccountantWithRateProviders accountant = teller.accountant(); _baseDecimalsTempStore(address(offer), accountant); (uint256[] memory assetPrices, int256[] memory balanceDeltas) = _multiAssetRedeemSolveSetup(offer, wantAssets, accountant); // Solve for each want asset with its corresponding users _doAllSolves(offer, wantAssets, teller, assetPrices); // send any excess offer shares to the solver or redeem in requested currency if specified if (redeemCurrencyForExcessOffer != address(0)) { teller.bulkWithdraw(ERC20(redeemCurrencyForExcessOffer), offer.balanceOf(address(this)), 0, msg.sender); } else { offer.safeTransfer(msg.sender, offer.balanceOf(address(this))); } // global slippage check with the balances, prices and maxOfferAssets _globalSlippageCheck(balanceDeltas, assetPrices, globalSlippagePriceMinimum, wantAssets, teller); // delete the temp storage for base decimals _baseDecimalsTempDelete(address(offer)); } function finishSolve( bytes calldata runData, address initiator, ERC20 offer, ERC20 want, uint256 offerReceived, uint256 wantApprovalAmount ) external { if (initiator != address(this)) revert MultiAssetAtomicSolverRedeem___WrongInitiator(); if (msg.sender != address(queue)) revert MultiAssetAtomicSolverRedeem___OnlyQueue(msg.sender, address(queue)); SolveType _type = abi.decode(runData, (SolveType)); if (_type == SolveType.P2P) { revert MultiAssetAtomicSolverRedeem___OnlyRedeemAllowed(); } else if (_type == SolveType.REDEEM) { _multiAssetRedeemSolve(runData, offer, want, offerReceived, wantApprovalAmount); } } function toggleApprovedSolvers(address[] memory solvers) external onlyOwner { for (uint256 i; i < solvers.length;) { isApprovedSolver[solvers[i]] = !isApprovedSolver[solvers[i]]; unchecked { ++i; } } } function _multiAssetRedeemSolve( bytes memory runData, ERC20 offer, ERC20 want, uint256, uint256 wantApprovalAmount ) internal { (, address solver,, uint256 maxAssets, TellerWithMultiAssetSupport teller, uint256 priceToCheckAtomicPrice) = abi.decode(runData, (SolveType, address, uint256, uint256, TellerWithMultiAssetSupport, uint256)); if (address(offer) != address(teller.vault())) { revert MultiAssetAtomicSolverRedeem___BoringVaultTellerMismatch(address(offer), address(teller)); } // Make sure solvers `maxAssets` was not exceeded. if (wantApprovalAmount > maxAssets) { revert MultiAssetAtomicSolverRedeem___SolveMaxAssetsExceeded(wantApprovalAmount, maxAssets); } _handleExcessOrBalanceAmounts(solver, want, offer, teller, wantApprovalAmount, priceToCheckAtomicPrice); // only transfer if there are orders to be filled if (wantApprovalAmount > 0) { // Transfer required assets from solver want.safeTransferFrom(solver, address(this), wantApprovalAmount); // Approve queue to spend wantApprovalAmount want.safeApprove(address(queue), wantApprovalAmount); } } function _doTempStore( ERC20 asset, uint256 excessAmount, bool useSolverBalanceFirst, uint256 maxAllowableOfferAmountFromSolver ) internal { // Store excessAssetAmount, useSolverBalanceFirst, decimals and maxAllowableOfferAmountFromSolver for each asset uint256 key1 = uint256(keccak256(abi.encodePacked(asset))); uint256 key2 = key1 + 1; uint256 key3 = key2 + 1; uint256 key4 = key3 + 1; uint8 decimals = asset.decimals(); assembly { tstore(key1, excessAmount) tstore(key2, useSolverBalanceFirst) tstore(key3, decimals) tstore(key4, maxAllowableOfferAmountFromSolver) } } function _doTempLoad(address asset) internal view returns (uint256, bool, uint8, uint256) { uint256 key1 = uint256(keccak256(abi.encodePacked(asset))); uint256 key2 = key1 + 1; uint256 key3 = key2 + 1; uint256 key4 = key3 + 1; uint256 excessAssetAmount; bool useSolverBalanceFirst; uint8 decimals; uint256 maxAllowableOfferAmountFromSolver; assembly { excessAssetAmount := tload(key1) useSolverBalanceFirst := tload(key2) decimals := tload(key3) maxAllowableOfferAmountFromSolver := tload(key4) } return (excessAssetAmount, useSolverBalanceFirst, decimals, maxAllowableOfferAmountFromSolver); } function _doTempDelete(address asset) internal { uint256 key1 = uint256(keccak256(abi.encodePacked(asset))); uint256 key2 = key1 + 1; uint256 key3 = key2 + 1; uint256 key4 = key3 + 1; assembly { tstore(key1, 0) tstore(key2, 0) tstore(key3, 0) tstore(key4, 0) } } function _baseDecimalsTempStore(address offer, AccountantWithRateProviders accountant) internal { uint256 key = uint256(keccak256(abi.encodePacked(offer))); uint8 decimals = accountant.decimals(); assembly { tstore(key, decimals) } } function _baseDecimalsTempLoad(address offer) internal view returns (uint8) { uint256 key = uint256(keccak256(abi.encodePacked(offer))); uint8 decimals; assembly { decimals := tload(key) } return decimals; } function _baseDecimalsTempDelete(address offer) internal { uint256 key = uint256(keccak256(abi.encodePacked(offer))); assembly { tstore(key, 0) } } function _getMinOfferNeededForWant( uint256 wantAmount, uint256 priceToCheckAtomicPrice, ERC20 offer, uint8 wantDecimals ) internal view returns (uint256 offerNeededForWant) { // handling cases where decimals could differ between offer and want // use tstore/tload to avoid external calls // @notice: in all nucleus deployments, offer and base decimals should be same, but other want assets could have // different decimals uint8 baseDecimals = _baseDecimalsTempLoad(address(offer)); offerNeededForWant = Math.ceilDiv(wantAmount * (10 ** baseDecimals), priceToCheckAtomicPrice); } function _globalSlippageCheck( int256[] memory balanceDeltas, uint256[] memory assetPrices, int256 globalSlippagePriceMinimum, WantAssetData[] calldata wantAssets, TellerWithMultiAssetSupport teller ) internal { int256 actualSlippage = 0; // AccountantWithRateProviders accountant = teller.accountant(); ERC20 offer = ERC20(teller.vault()); uint8 baseDecimals = _baseDecimalsTempLoad(address(offer)); uint256 baseExchangeRate = AccountantWithRateProviders(teller.accountant()).getRate(); uint256 i; for (i; i < wantAssets.length;) { ERC20 wantAsset = wantAssets[i].asset; //update the balance delta to reflect the actual change in balance balanceDeltas[i] = int256(wantAsset.balanceOf(msg.sender)) - balanceDeltas[i]; (,, uint8 wantDecimals,) = _doTempLoad(address(wantAsset)); // Convert balance delta to base decimals int256 scaledDelta = _changeDecimalsSigned(balanceDeltas[i], wantDecimals, baseDecimals); // Convert asset price to base decimals uint256 scaledPrice = _changeDecimals(assetPrices[i], wantDecimals, baseDecimals); // Calculate the slippage for this asset int256 assetSlippage = SignedMath.ternary(scaledDelta < 0, -1, int256(1)) * int256( Math.mulDiv( SignedMath.abs(scaledDelta), baseExchangeRate, scaledPrice, Math.Rounding.Floor // Round down for conservative estimate ) ); actualSlippage += assetSlippage; // go ahead and delete the temp storage for this want asset _doTempDelete(address(wantAsset)); unchecked { ++i; } } // Update the balance delta for the offer token balanceDeltas[i] = int256(offer.balanceOf(msg.sender)) - balanceDeltas[i]; // Add the offer token's balance delta in terms of base token actualSlippage += SignedMath.ternary(balanceDeltas[balanceDeltas.length - 1] < 0, -1, int256(1)) * int256( Math.mulDiv( SignedMath.abs(balanceDeltas[balanceDeltas.length - 1]), baseExchangeRate, 10 ** baseDecimals, Math.Rounding.Floor // Round down for conservative estimate ) ); if (globalSlippagePriceMinimum > actualSlippage) { revert MultiAssetAtomicSolverRedeem___GlobalSlippageThresholdExceeded( globalSlippagePriceMinimum, balanceDeltas, actualSlippage ); } } // Helper function to change decimals similar to one in AccountantWithRateProviders function _changeDecimals(uint256 amount, uint8 fromDecimals, uint8 toDecimals) internal pure returns (uint256) { if (fromDecimals == toDecimals) { return amount; } else if (fromDecimals < toDecimals) { return amount * (10 ** (toDecimals - fromDecimals)); } else { return amount / (10 ** (fromDecimals - toDecimals)); } } // Helper function to change decimals for signed integers function _changeDecimalsSigned( int256 amount, uint8 fromDecimals, uint8 toDecimals ) internal pure returns (int256) { if (fromDecimals == toDecimals) { return amount; } else if (fromDecimals < toDecimals) { return amount * int256(10 ** (toDecimals - fromDecimals)); } else { return amount / int256(10 ** (fromDecimals - toDecimals)); } } function _doAllSolves( ERC20 offer, WantAssetData[] calldata wantAssets, TellerWithMultiAssetSupport teller, uint256[] memory assetPrices ) internal { for (uint256 i = 0; i < wantAssets.length;) { bytes memory runData = abi.encode( SolveType.REDEEM, msg.sender, wantAssets[i].minimumAssetsOut, wantAssets[i].maxAssets, teller, assetPrices[i] ); //check if there are orders to be filled, if not, skip to internal _multiAssetRedeemSolve function if (wantAssets[i].users.length == 0) { _multiAssetRedeemSolve(runData, offer, wantAssets[i].asset, 0, 0); } else { queue.solve( offer, wantAssets[i].asset, wantAssets[i].users, runData, address(this), wantAssets[i].clearingPriceForAsset ); } unchecked { ++i; } } } function _multiAssetRedeemSolveSetup( ERC20 offer, WantAssetData[] calldata wantAssets, AccountantWithRateProviders accountant ) internal returns (uint256[] memory, int256[] memory) { uint256[] memory assetPrices = new uint256[](wantAssets.length); // plus 1 for the offer/vault token int256[] memory balanceDeltas = new int256[](wantAssets.length + 1); address[] memory usedAddresses = new address[](wantAssets.length); uint256 i; for (i; i < wantAssets.length;) { // Checks if any want assets are duplicates, // since typically want assets supported will be // in the single digits, this does not need to be optimized with bit/bloom filtering // and enforcing order of want assets to be increasing in address is not feasible since // the order of want assets needs to correspond to which use existing balance and which use excess for (uint256 j = 0; j < i;) { address wantAssetAddress = address(wantAssets[i].asset); if (address(wantAssetAddress) == usedAddresses[j]) { revert MultiAssetAtomicSolverRedeem___DuplicateWantAsset(wantAssetAddress); } unchecked { ++j; } } // Get the rate in quote for each want asset assetPrices[i] = accountant.getRateInQuoteSafe(wantAssets[i].asset); // if price is 0, revert as either paused, not supported, or failed to get rate if (assetPrices[i] == 0) { revert MultiAssetAtomicSolverRedeem___FailedToSolve(); } //set the temp store for the want asset which will be loaded after callback _doTempStore( wantAssets[i].asset, wantAssets[i].excessAssetAmount, wantAssets[i].useSolverBalanceFirst, wantAssets[i].maxAllowableOfferAmountFromSolver ); // Set initial balance to calculate global slippage later balanceDeltas[i] = int256(wantAssets[i].asset.balanceOf(msg.sender)); // Update the used addresses array for duplicate checking usedAddresses[i] = address(wantAssets[i].asset); unchecked { ++i; } } // store the solver balance for the offer asset at index wantAssets.length balanceDeltas[i] = int256(offer.balanceOf(msg.sender)); return (assetPrices, balanceDeltas); } function _handleExcessOrBalanceAmounts( address solver, ERC20 want, ERC20 offer, TellerWithMultiAssetSupport teller, uint256 wantApprovalAmount, uint256 priceToCheckAtomicPrice ) internal { // Find from tload the excessAssetAmount, useSolverBalanceFirst, decimals and maxAllowableOfferAmountFromSolver // for this want asset ( uint256 excessAmount, bool useSolverBalanceFirst, uint8 wantDecimals, uint256 maxAllowableOfferAmountFromSolver ) = _doTempLoad(address(want)); uint256 offerNeededForWant; if (useSolverBalanceFirst) { uint256 solverBalance = want.balanceOf(solver); // if the solver wants to use their balance first, check if it is enough to fill completely any wants // the wants can be comprised of // 1. wantApprovalAmount from user orders // 2. excessAmount from solver that would be needed to for example close any open positions, e.g. flash // swaps if (solverBalance >= wantApprovalAmount + excessAmount) { offerNeededForWant = 0; } else { offerNeededForWant = _getMinOfferNeededForWant( wantApprovalAmount + excessAmount - solverBalance, priceToCheckAtomicPrice, offer, wantDecimals ); // Check and handle offer amount, potentially getting more from solver offerNeededForWant = _checkAndHandleOfferAmount(offerNeededForWant, maxAllowableOfferAmountFromSolver, solver, offer); } // Redeem the shares, sending assets to solver if any residual amount is needed if (offerNeededForWant > 0) { teller.bulkWithdraw(want, offerNeededForWant, wantApprovalAmount + excessAmount - solverBalance, solver); } } else { offerNeededForWant = _getMinOfferNeededForWant( wantApprovalAmount + excessAmount, priceToCheckAtomicPrice, offer, wantDecimals ); // Check and handle offer amount, potentially getting more from solver offerNeededForWant = _checkAndHandleOfferAmount(offerNeededForWant, maxAllowableOfferAmountFromSolver, solver, offer); // Redeem the shares, sending assets to solver teller.bulkWithdraw(want, offerNeededForWant, wantApprovalAmount + excessAmount, solver); } } function _checkAndHandleOfferAmount( uint256 offerNeeded, uint256 maxAllowableOfferAmountFromSolver, address solver, ERC20 offer ) internal returns (uint256) { uint256 currentBalance = offer.balanceOf(address(this)); // Check if current balance is sufficient if (currentBalance >= offerNeeded) { return offerNeeded; } uint256 additionalOfferNeeded = offerNeeded - currentBalance; // Check if solver can provide the additional amount needed if (additionalOfferNeeded > maxAllowableOfferAmountFromSolver) { revert MultiAssetAtomicSolverRedeem___InsufficientOfferAmount( offerNeeded, currentBalance, maxAllowableOfferAmountFromSolver ); } // Transfer the additional amount from solver offer.safeTransferFrom(solver, address(this), additionalOfferNeeded); return offerNeeded; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/IERC1155Receiver.sol) pragma solidity ^0.8.20; import {IERC165} from "../../utils/introspection/IERC165.sol"; /** * @dev Interface that must be implemented by smart contracts in order to receive * ERC-1155 token transfers. */ interface IERC1155Receiver is IERC165 { /** * @dev Handles the receipt of a single ERC-1155 token type. This function is * called at the end of a `safeTransferFrom` after the balance has been updated. * * NOTE: To accept the transfer, this must return * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` * (i.e. 0xf23a6e61, or its own function selector). * * @param operator The address which initiated the transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param id The ID of the token being transferred * @param value The amount of tokens being transferred * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed */ function onERC1155Received( address operator, address from, uint256 id, uint256 value, bytes calldata data ) external returns (bytes4); /** * @dev Handles the receipt of a multiple ERC-1155 token types. This function * is called at the end of a `safeBatchTransferFrom` after the balances have * been updated. * * NOTE: To accept the transfer(s), this must return * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` * (i.e. 0xbc197c81, or its own function selector). * * @param operator The address which initiated the batch transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param ids An array containing ids of each token being transferred (order and length must match values array) * @param values An array containing amounts of each token being transferred (order and length must match ids array) * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed */ function onERC1155BatchReceived( address operator, address from, uint256[] calldata ids, uint256[] calldata values, bytes calldata data ) external returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/utils/ERC1155Holder.sol) pragma solidity ^0.8.20; import {IERC165, ERC165} from "../../../utils/introspection/ERC165.sol"; import {IERC1155Receiver} from "../IERC1155Receiver.sol"; /** * @dev Simple implementation of `IERC1155Receiver` that will allow a contract to hold ERC-1155 tokens. * * IMPORTANT: When inheriting this contract, you must include a way to use the received tokens, otherwise they will be * stuck. */ abstract contract ERC1155Holder is ERC165, IERC1155Receiver { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IERC1155Receiver).interfaceId || super.supportsInterface(interfaceId); } function onERC1155Received( address, address, uint256, uint256, bytes memory ) public virtual override returns (bytes4) { return this.onERC1155Received.selector; } function onERC1155BatchReceived( address, address, uint256[] memory, uint256[] memory, bytes memory ) public virtual override returns (bytes4) { return this.onERC1155BatchReceived.selector; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721Receiver.sol) pragma solidity ^0.8.20; /** * @title ERC-721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC-721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be * reverted. * * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/utils/ERC721Holder.sol) pragma solidity ^0.8.20; import {IERC721Receiver} from "../IERC721Receiver.sol"; /** * @dev Implementation of the {IERC721Receiver} interface. * * Accepts all token transfers. * Make sure the contract is able to use its token with {IERC721-safeTransferFrom}, {IERC721-approve} or * {IERC721-setApprovalForAll}. */ abstract contract ERC721Holder is IERC721Receiver { /** * @dev See {IERC721Receiver-onERC721Received}. * * Always returns `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received(address, address, uint256, bytes memory) public virtual returns (bytes4) { return this.onERC721Received.selector; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol) pragma solidity ^0.8.20; import {Errors} from "./Errors.sol"; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert Errors.InsufficientBalance(address(this).balance, amount); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert Errors.FailedCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {Errors.FailedCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case * of an unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {Errors.FailedCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert Errors.FailedCall(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; /** * @dev Collection of common custom errors used in multiple contracts * * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library. * It is recommended to avoid relying on the error API for critical functionality. */ library Errors { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error InsufficientBalance(uint256 balance, uint256 needed); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedCall(); /** * @dev The deployment failed. */ error FailedDeployment(); /** * @dev A necessary precompile is missing. */ error MissingPrecompile(address); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { /// @solidity memory-safe-assembly assembly { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, expect 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); /// @solidity memory-safe-assembly assembly { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { /// @solidity memory-safe-assembly assembly { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Provides a flexible and updatable auth pattern which is completely separate from application logic. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Auth.sol) /// @author Modified from Dappsys (https://github.com/dapphub/ds-auth/blob/master/src/auth.sol) abstract contract Auth { event OwnershipTransferred(address indexed user, address indexed newOwner); event AuthorityUpdated(address indexed user, Authority indexed newAuthority); address public owner; Authority public authority; constructor(address _owner, Authority _authority) { owner = _owner; authority = _authority; emit OwnershipTransferred(msg.sender, _owner); emit AuthorityUpdated(msg.sender, _authority); } modifier requiresAuth() virtual { require(isAuthorized(msg.sender, msg.sig), "UNAUTHORIZED"); _; } function isAuthorized(address user, bytes4 functionSig) internal view virtual returns (bool) { Authority auth = authority; // Memoizing authority saves us a warm SLOAD, around 100 gas. // Checking if the caller is the owner only after calling the authority saves gas in most cases, but be // aware that this makes protected functions uncallable even to the owner if the authority is out of order. return (address(auth) != address(0) && auth.canCall(user, address(this), functionSig)) || user == owner; } function setAuthority(Authority newAuthority) public virtual { // We check if the caller is the owner first because we want to ensure they can // always swap out the authority even if it's reverting or using up a lot of gas. require(msg.sender == owner || authority.canCall(msg.sender, address(this), msg.sig)); authority = newAuthority; emit AuthorityUpdated(msg.sender, newAuthority); } function transferOwnership(address newOwner) public virtual requiresAuth { owner = newOwner; emit OwnershipTransferred(msg.sender, newOwner); } } /// @notice A generic interface for a contract which provides authorization data to an Auth instance. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Auth.sol) /// @author Modified from Dappsys (https://github.com/dapphub/ds-auth/blob/master/src/auth.sol) interface Authority { function canCall( address user, address target, bytes4 functionSig ) external view returns (bool); }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol) /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it. abstract contract ERC20 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); /*////////////////////////////////////////////////////////////// METADATA STORAGE //////////////////////////////////////////////////////////////*/ string public name; string public symbol; uint8 public immutable decimals; /*////////////////////////////////////////////////////////////// ERC20 STORAGE //////////////////////////////////////////////////////////////*/ uint256 public totalSupply; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; /*////////////////////////////////////////////////////////////// EIP-2612 STORAGE //////////////////////////////////////////////////////////////*/ uint256 internal immutable INITIAL_CHAIN_ID; bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR; mapping(address => uint256) public nonces; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( string memory _name, string memory _symbol, uint8 _decimals ) { name = _name; symbol = _symbol; decimals = _decimals; INITIAL_CHAIN_ID = block.chainid; INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator(); } /*////////////////////////////////////////////////////////////// ERC20 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 amount) public virtual returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { balanceOf[msg.sender] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals. if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount; balanceOf[from] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } /*////////////////////////////////////////////////////////////// EIP-2612 LOGIC //////////////////////////////////////////////////////////////*/ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED"); // Unchecked because the only math done is incrementing // the owner's nonce which cannot realistically overflow. unchecked { address recoveredAddress = ecrecover( keccak256( abi.encodePacked( "\x19\x01", DOMAIN_SEPARATOR(), keccak256( abi.encode( keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ), owner, spender, value, nonces[owner]++, deadline ) ) ) ), v, r, s ); require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER"); allowance[recoveredAddress][spender] = value; } emit Approval(owner, spender, value); } function DOMAIN_SEPARATOR() public view virtual returns (bytes32) { return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator(); } function computeDomainSeparator() internal view virtual returns (bytes32) { return keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256("1"), block.chainid, address(this) ) ); } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 amount) internal virtual { totalSupply += amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(address(0), to, amount); } function _burn(address from, uint256 amount) internal virtual { balanceOf[from] -= amount; // Cannot underflow because a user's balance // will never be larger than the total supply. unchecked { totalSupply -= amount; } emit Transfer(from, address(0), amount); } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import {ERC20} from "./ERC20.sol"; import {SafeTransferLib} from "../utils/SafeTransferLib.sol"; /// @notice Minimalist and modern Wrapped Ether implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/WETH.sol) /// @author Inspired by WETH9 (https://github.com/dapphub/ds-weth/blob/master/src/weth9.sol) contract WETH is ERC20("Wrapped Ether", "WETH", 18) { using SafeTransferLib for address; event Deposit(address indexed from, uint256 amount); event Withdrawal(address indexed to, uint256 amount); function deposit() public payable virtual { _mint(msg.sender, msg.value); emit Deposit(msg.sender, msg.value); } function withdraw(uint256 amount) public virtual { _burn(msg.sender, amount); emit Withdrawal(msg.sender, amount); msg.sender.safeTransferETH(amount); } receive() external payable virtual { deposit(); } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol) /// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol) library FixedPointMathLib { /*////////////////////////////////////////////////////////////// SIMPLIFIED FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ uint256 internal constant MAX_UINT256 = 2**256 - 1; uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s. function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down. } function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up. } function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down. } function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up. } /*////////////////////////////////////////////////////////////// LOW LEVEL FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ function mulDivDown( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y)) if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) { revert(0, 0) } // Divide x * y by the denominator. z := div(mul(x, y), denominator) } } function mulDivUp( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y)) if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) { revert(0, 0) } // If x * y modulo the denominator is strictly greater than 0, // 1 is added to round up the division of x * y by the denominator. z := add(gt(mod(mul(x, y), denominator), 0), div(mul(x, y), denominator)) } } function rpow( uint256 x, uint256 n, uint256 scalar ) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { switch x case 0 { switch n case 0 { // 0 ** 0 = 1 z := scalar } default { // 0 ** n = 0 z := 0 } } default { switch mod(n, 2) case 0 { // If n is even, store scalar in z for now. z := scalar } default { // If n is odd, store x in z for now. z := x } // Shifting right by 1 is like dividing by 2. let half := shr(1, scalar) for { // Shift n right by 1 before looping to halve it. n := shr(1, n) } n { // Shift n right by 1 each iteration to halve it. n := shr(1, n) } { // Revert immediately if x ** 2 would overflow. // Equivalent to iszero(eq(div(xx, x), x)) here. if shr(128, x) { revert(0, 0) } // Store x squared. let xx := mul(x, x) // Round to the nearest number. let xxRound := add(xx, half) // Revert if xx + half overflowed. if lt(xxRound, xx) { revert(0, 0) } // Set x to scaled xxRound. x := div(xxRound, scalar) // If n is even: if mod(n, 2) { // Compute z * x. let zx := mul(z, x) // If z * x overflowed: if iszero(eq(div(zx, x), z)) { // Revert if x is non-zero. if iszero(iszero(x)) { revert(0, 0) } } // Round to the nearest number. let zxRound := add(zx, half) // Revert if zx + half overflowed. if lt(zxRound, zx) { revert(0, 0) } // Return properly scaled zxRound. z := div(zxRound, scalar) } } } } } /*////////////////////////////////////////////////////////////// GENERAL NUMBER UTILITIES //////////////////////////////////////////////////////////////*/ function sqrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { let y := x // We start y at x, which will help us make our initial estimate. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // We check y >= 2^(k + 8) but shift right by k bits // each branch to ensure that if x >= 256, then y >= 256. if iszero(lt(y, 0x10000000000000000000000000000000000)) { y := shr(128, y) z := shl(64, z) } if iszero(lt(y, 0x1000000000000000000)) { y := shr(64, y) z := shl(32, z) } if iszero(lt(y, 0x10000000000)) { y := shr(32, y) z := shl(16, z) } if iszero(lt(y, 0x1000000)) { y := shr(16, y) z := shl(8, z) } // Goal was to get z*z*y within a small factor of x. More iterations could // get y in a tighter range. Currently, we will have y in [256, 256*2^16). // We ensured y >= 256 so that the relative difference between y and y+1 is small. // That's not possible if x < 256 but we can just verify those cases exhaustively. // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256. // Correctness can be checked exhaustively for x < 256, so we assume y >= 256. // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps. // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256. // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18. // There is no overflow risk here since y < 2^136 after the first branch above. z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If x+1 is a perfect square, the Babylonian method cycles between // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case. // If you don't care whether the floor or ceil square root is returned, you can remove this statement. z := sub(z, lt(div(x, z), z)) } } function unsafeMod(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Mod x by y. Note this will return // 0 instead of reverting if y is zero. z := mod(x, y) } } function unsafeDiv(uint256 x, uint256 y) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { // Divide x by y. Note this will return // 0 instead of reverting if y is zero. r := div(x, y) } } function unsafeDivUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Add 1 to x * y if x % y > 0. Note this will // return 0 instead of reverting if y is zero. z := add(gt(mod(x, y), 0), div(x, y)) } } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Gas optimized reentrancy protection for smart contracts. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ReentrancyGuard.sol) /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/security/ReentrancyGuard.sol) abstract contract ReentrancyGuard { uint256 private locked = 1; modifier nonReentrant() virtual { require(locked == 1, "REENTRANCY"); locked = 2; _; locked = 1; } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import {ERC20} from "../tokens/ERC20.sol"; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer. /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller. library SafeTransferLib { /*////////////////////////////////////////////////////////////// ETH OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferETH(address to, uint256 amount) internal { bool success; /// @solidity memory-safe-assembly assembly { // Transfer the ETH and store if it succeeded or not. success := call(gas(), to, amount, 0, 0, 0, 0) } require(success, "ETH_TRANSFER_FAILED"); } /*////////////////////////////////////////////////////////////// ERC20 OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferFrom( ERC20 token, address from, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from" argument. mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument. mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 100, 0, 32) ) } require(success, "TRANSFER_FROM_FAILED"); } function safeTransfer( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "TRANSFER_FAILED"); } function safeApprove( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "APPROVE_FAILED"); } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.8.0; import { ERC20 } from "@solmate/tokens/ERC20.sol"; interface IAtomicSolver { /** * @notice This function must be implemented in order for an address to be a `solver` * for the AtomicQueue * @param runData arbitrary bytes data that is dependent on how each solver is setup * it could contain swap data, or flash loan data, etc.. * @param initiator the address that initiated a solve * @param offer the ERC20 asset sent to the solver * @param want the ERC20 asset the solver must approve the queue for * @param assetsToOffer the amount of `offer` sent to the solver * @param assetsForWant the amount of `want` the solver must approve the queue for */ function finishSolve( bytes calldata runData, address initiator, ERC20 offer, ERC20 want, uint256 assetsToOffer, uint256 assetsForWant ) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.25; import { Address } from "@openzeppelin/contracts/utils/Address.sol"; import { ERC721Holder } from "@openzeppelin/contracts/token/ERC721/utils/ERC721Holder.sol"; import { ERC1155Holder } from "@openzeppelin/contracts/token/ERC1155/utils/ERC1155Holder.sol"; import { FixedPointMathLib } from "@solmate/utils/FixedPointMathLib.sol"; import { SafeTransferLib } from "@solmate/utils/SafeTransferLib.sol"; import { ERC20 } from "@solmate/tokens/ERC20.sol"; import { BeforeTransferHook } from "src/interfaces/BeforeTransferHook.sol"; import { Auth, Authority } from "@solmate/auth/Auth.sol"; /** * @title BoringVault * @custom:security-contact [email protected] */ contract BoringVault is ERC20, Auth, ERC721Holder, ERC1155Holder { using Address for address; using SafeTransferLib for ERC20; using FixedPointMathLib for uint256; // ========================================= STATE ========================================= /** * @notice Contract responsible for implementing `beforeTransfer`. */ BeforeTransferHook public hook; //============================== EVENTS =============================== event Enter(address indexed from, address indexed asset, uint256 amount, address indexed to, uint256 shares); event Exit(address indexed to, address indexed asset, uint256 amount, address indexed from, uint256 shares); //============================== CONSTRUCTOR =============================== constructor( address _owner, string memory _name, string memory _symbol, uint8 _decimals ) ERC20(_name, _symbol, _decimals) Auth(_owner, Authority(address(0))) { } //============================== MANAGE =============================== /** * @notice Allows manager to make an arbitrary function call from this contract. * @dev Callable by MANAGER_ROLE. */ function manage( address target, bytes calldata data, uint256 value ) external requiresAuth returns (bytes memory result) { result = target.functionCallWithValue(data, value); } /** * @notice Allows manager to make arbitrary function calls from this contract. * @dev Callable by MANAGER_ROLE. */ function manage( address[] calldata targets, bytes[] calldata data, uint256[] calldata values ) external requiresAuth returns (bytes[] memory results) { uint256 targetsLength = targets.length; results = new bytes[](targetsLength); for (uint256 i; i < targetsLength; ++i) { results[i] = targets[i].functionCallWithValue(data[i], values[i]); } } //============================== ENTER =============================== /** * @notice Allows minter to mint shares, in exchange for assets. * @dev If assetAmount is zero, no assets are transferred in. * @dev Callable by MINTER_ROLE. */ function enter( address from, ERC20 asset, uint256 assetAmount, address to, uint256 shareAmount ) external requiresAuth { // Transfer assets in if (assetAmount > 0) asset.safeTransferFrom(from, address(this), assetAmount); // Mint shares. _mint(to, shareAmount); emit Enter(from, address(asset), assetAmount, to, shareAmount); } //============================== EXIT =============================== /** * @notice Allows burner to burn shares, in exchange for assets. * @dev If assetAmount is zero, no assets are transferred out. * @dev Callable by BURNER_ROLE. */ function exit( address to, ERC20 asset, uint256 assetAmount, address from, uint256 shareAmount ) external requiresAuth { // Burn shares. _burn(from, shareAmount); // Transfer assets out. if (assetAmount > 0) asset.safeTransfer(to, assetAmount); emit Exit(to, address(asset), assetAmount, from, shareAmount); } //============================== BEFORE TRANSFER HOOK =============================== /** * @notice Sets the share locker. * @notice If set to zero address, the share locker logic is disabled. * @dev Callable by OWNER_ROLE. */ function setBeforeTransferHook(address _hook) external requiresAuth { hook = BeforeTransferHook(_hook); } /** * @notice Check if from addresses shares are locked, reverting if so. */ function _callBeforeTransfer(address from) internal view { if (address(hook) != address(0)) hook.beforeTransfer(from); } function transfer(address to, uint256 amount) public override returns (bool) { _callBeforeTransfer(msg.sender); return super.transfer(to, amount); } function transferFrom(address from, address to, uint256 amount) public override returns (bool) { _callBeforeTransfer(from); return super.transferFrom(from, to, amount); } //============================== RECEIVE =============================== receive() external payable { } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.25; import { FixedPointMathLib } from "@solmate/utils/FixedPointMathLib.sol"; import { IRateProvider } from "src/interfaces/IRateProvider.sol"; import { ERC20 } from "@solmate/tokens/ERC20.sol"; import { SafeTransferLib } from "@solmate/utils/SafeTransferLib.sol"; import { BoringVault } from "src/base/BoringVault.sol"; import { Auth, Authority } from "@solmate/auth/Auth.sol"; /** * @title AccountantWithRateProviders * @custom:security-contact [email protected] */ contract AccountantWithRateProviders is Auth, IRateProvider { using FixedPointMathLib for uint256; using SafeTransferLib for ERC20; // ========================================= STRUCTS ========================================= /** * @param payoutAddress the address `claimFees` sends fees to * @param feesOwedInBase total pending fees owed in terms of base * @param totalSharesLastUpdate total amount of shares the last exchange rate update * @param exchangeRate the current exchange rate in terms of base * @param allowedExchangeRateChangeUpper the max allowed change to exchange rate from an update * @param allowedExchangeRateChangeLower the min allowed change to exchange rate from an update * @param lastUpdateTimestamp the block timestamp of the last exchange rate update * @param isPaused whether or not this contract is paused * @param minimumUpdateDelayInSeconds the minimum amount of time that must pass between * exchange rate updates, such that the update won't trigger the contract to be paused * @param managementFee the management fee */ struct AccountantState { address payoutAddress; uint128 feesOwedInBase; uint128 totalSharesLastUpdate; uint96 exchangeRate; uint16 allowedExchangeRateChangeUpper; uint16 allowedExchangeRateChangeLower; uint64 lastUpdateTimestamp; bool isPaused; uint32 minimumUpdateDelayInSeconds; uint16 managementFee; } /** * @param isPeggedToBase whether or not the asset is 1:1 with the base asset * @param rateProvider the rate provider for this asset if `isPeggedToBase` is false */ struct RateProviderData { bool isPeggedToBase; IRateProvider rateProvider; } // ========================================= STATE ========================================= /** * @notice Store the accountant state in 3 packed slots. */ AccountantState public accountantState; /** * @notice Maps ERC20s to their RateProviderData. */ mapping(ERC20 => RateProviderData) public rateProviderData; //============================== ERRORS =============================== error AccountantWithRateProviders__UpperBoundTooSmall(); error AccountantWithRateProviders__LowerBoundTooLarge(); error AccountantWithRateProviders__ManagementFeeTooLarge(); error AccountantWithRateProviders__Paused(); error AccountantWithRateProviders__ZeroFeesOwed(); error AccountantWithRateProviders__OnlyCallableByBoringVault(); error AccountantWithRateProviders__UpdateDelayTooLarge(); //============================== EVENTS =============================== event Paused(); event Unpaused(); event DelayInSecondsUpdated(uint32 oldDelay, uint32 newDelay); event UpperBoundUpdated(uint16 oldBound, uint16 newBound); event LowerBoundUpdated(uint16 oldBound, uint16 newBound); event ManagementFeeUpdated(uint16 oldFee, uint16 newFee); event PayoutAddressUpdated(address oldPayout, address newPayout); event RateProviderUpdated(address asset, bool isPegged, address rateProvider); event ExchangeRateUpdated(uint96 oldRate, uint96 newRate, uint64 currentTime); event FeesClaimed(address indexed feeAsset, uint256 amount); //============================== IMMUTABLES =============================== /** * @notice The base asset rates are provided in. */ ERC20 public immutable base; /** * @notice The decimals rates are provided in. */ uint8 public immutable decimals; /** * @notice The BoringVault this accountant is working with. * Used to determine share supply for fee calculation. */ BoringVault public immutable vault; /** * @notice One share of the BoringVault. */ uint256 internal immutable ONE_SHARE; constructor( address _owner, address _vault, address payoutAddress, uint96 startingExchangeRate, address _base, uint16 allowedExchangeRateChangeUpper, uint16 allowedExchangeRateChangeLower, uint32 minimumUpdateDelayInSeconds, uint16 managementFee ) Auth(_owner, Authority(address(0))) { base = ERC20(_base); decimals = ERC20(_base).decimals(); vault = BoringVault(payable(_vault)); ONE_SHARE = 10 ** vault.decimals(); accountantState = AccountantState({ payoutAddress: payoutAddress, feesOwedInBase: 0, totalSharesLastUpdate: uint128(vault.totalSupply()), exchangeRate: startingExchangeRate, allowedExchangeRateChangeUpper: allowedExchangeRateChangeUpper, allowedExchangeRateChangeLower: allowedExchangeRateChangeLower, lastUpdateTimestamp: uint64(block.timestamp), isPaused: false, minimumUpdateDelayInSeconds: minimumUpdateDelayInSeconds, managementFee: managementFee }); } // ========================================= ADMIN FUNCTIONS ========================================= /** * @notice Pause this contract, which prevents future calls to `updateExchangeRate`, and any safe rate * calls will revert. * @dev Callable by MULTISIG_ROLE. */ function pause() external requiresAuth { accountantState.isPaused = true; emit Paused(); } /** * @notice Unpause this contract, which allows future calls to `updateExchangeRate`, and any safe rate * calls will stop reverting. * @dev Callable by MULTISIG_ROLE. */ function unpause() external requiresAuth { accountantState.isPaused = false; emit Unpaused(); } /** * @notice Update the minimum time delay between `updateExchangeRate` calls. * @dev There are no input requirements, as it is possible the admin would want * the exchange rate updated as frequently as needed. * @dev Callable by OWNER_ROLE. */ function updateDelay(uint32 minimumUpdateDelayInSeconds) external requiresAuth { if (minimumUpdateDelayInSeconds > 14 days) revert AccountantWithRateProviders__UpdateDelayTooLarge(); uint32 oldDelay = accountantState.minimumUpdateDelayInSeconds; accountantState.minimumUpdateDelayInSeconds = minimumUpdateDelayInSeconds; emit DelayInSecondsUpdated(oldDelay, minimumUpdateDelayInSeconds); } /** * @notice Update the allowed upper bound change of exchange rate between `updateExchangeRateCalls`. * @dev Callable by OWNER_ROLE. */ function updateUpper(uint16 allowedExchangeRateChangeUpper) external requiresAuth { if (allowedExchangeRateChangeUpper < 1e4) revert AccountantWithRateProviders__UpperBoundTooSmall(); uint16 oldBound = accountantState.allowedExchangeRateChangeUpper; accountantState.allowedExchangeRateChangeUpper = allowedExchangeRateChangeUpper; emit UpperBoundUpdated(oldBound, allowedExchangeRateChangeUpper); } /** * @notice Update the allowed lower bound change of exchange rate between `updateExchangeRateCalls`. * @dev Callable by OWNER_ROLE. */ function updateLower(uint16 allowedExchangeRateChangeLower) external requiresAuth { if (allowedExchangeRateChangeLower > 1e4) revert AccountantWithRateProviders__LowerBoundTooLarge(); uint16 oldBound = accountantState.allowedExchangeRateChangeLower; accountantState.allowedExchangeRateChangeLower = allowedExchangeRateChangeLower; emit LowerBoundUpdated(oldBound, allowedExchangeRateChangeLower); } /** * @notice Update the management fee to a new value. * @dev Callable by OWNER_ROLE. */ function updateManagementFee(uint16 managementFee) external requiresAuth { if (managementFee > 0.2e4) revert AccountantWithRateProviders__ManagementFeeTooLarge(); uint16 oldFee = accountantState.managementFee; accountantState.managementFee = managementFee; emit ManagementFeeUpdated(oldFee, managementFee); } /** * @notice Update the payout address fees are sent to. * @dev Callable by OWNER_ROLE. */ function updatePayoutAddress(address payoutAddress) external requiresAuth { address oldPayout = accountantState.payoutAddress; accountantState.payoutAddress = payoutAddress; emit PayoutAddressUpdated(oldPayout, payoutAddress); } /** * @notice Update the rate provider data for a specific `asset`. * @dev Rate providers must return rates in terms of `base` or * an asset pegged to base and they must use the same decimals * as `asset`. * @dev Callable by OWNER_ROLE. */ function setRateProviderData(ERC20 asset, bool isPeggedToBase, address rateProvider) external requiresAuth { rateProviderData[asset] = RateProviderData({ isPeggedToBase: isPeggedToBase, rateProvider: IRateProvider(rateProvider) }); emit RateProviderUpdated(address(asset), isPeggedToBase, rateProvider); } // ========================================= UPDATE EXCHANGE RATE/FEES FUNCTIONS // ========================================= /** * @notice Updates this contract exchangeRate. * @dev If new exchange rate is outside of accepted bounds, or if not enough time has passed, this * will pause the contract, and this function will NOT calculate fees owed. * @dev Callable by UPDATE_EXCHANGE_RATE_ROLE. */ function updateExchangeRate(uint96 newExchangeRate) external requiresAuth { AccountantState storage state = accountantState; if (state.isPaused) revert AccountantWithRateProviders__Paused(); uint64 currentTime = uint64(block.timestamp); uint256 currentExchangeRate = state.exchangeRate; uint256 currentTotalShares = vault.totalSupply(); if ( currentTime < state.lastUpdateTimestamp + state.minimumUpdateDelayInSeconds || newExchangeRate > currentExchangeRate.mulDivDown(state.allowedExchangeRateChangeUpper, 1e4) || newExchangeRate < currentExchangeRate.mulDivDown(state.allowedExchangeRateChangeLower, 1e4) ) { // Instead of reverting, pause the contract. This way the exchange rate updater is able to update the // exchange rate // to a better value, and pause it. state.isPaused = true; } else { // Only update fees if we are not paused. // Update fee accounting. uint256 shareSupplyToUse = currentTotalShares; // Use the minimum between current total supply and total supply for last update. if (state.totalSharesLastUpdate < shareSupplyToUse) { shareSupplyToUse = state.totalSharesLastUpdate; } // Determine management fees owned. uint256 timeDelta = currentTime - state.lastUpdateTimestamp; uint256 minimumAssets = newExchangeRate > currentExchangeRate ? shareSupplyToUse.mulDivDown(currentExchangeRate, ONE_SHARE) : shareSupplyToUse.mulDivDown(newExchangeRate, ONE_SHARE); uint256 managementFeesAnnual = minimumAssets.mulDivDown(state.managementFee, 1e4); uint256 newFeesOwedInBase = managementFeesAnnual.mulDivDown(timeDelta, 365 days); state.feesOwedInBase += uint128(newFeesOwedInBase); } state.exchangeRate = newExchangeRate; state.totalSharesLastUpdate = uint128(currentTotalShares); state.lastUpdateTimestamp = currentTime; emit ExchangeRateUpdated(uint96(currentExchangeRate), newExchangeRate, currentTime); } /** * @notice Claim pending fees. * @dev This function must be called by the BoringVault. * @dev This function will lose precision if the exchange rate * decimals is greater than the feeAsset's decimals. */ function claimFees(ERC20 feeAsset) external { if (msg.sender != address(vault)) revert AccountantWithRateProviders__OnlyCallableByBoringVault(); AccountantState storage state = accountantState; if (state.isPaused) revert AccountantWithRateProviders__Paused(); if (state.feesOwedInBase == 0) revert AccountantWithRateProviders__ZeroFeesOwed(); // Determine amount of fees owed in feeAsset. uint256 feesOwedInFeeAsset; RateProviderData memory data = rateProviderData[feeAsset]; if (address(feeAsset) == address(base)) { feesOwedInFeeAsset = state.feesOwedInBase; } else { uint8 feeAssetDecimals = ERC20(feeAsset).decimals(); uint256 feesOwedInBaseUsingFeeAssetDecimals = changeDecimals(state.feesOwedInBase, decimals, feeAssetDecimals); if (data.isPeggedToBase) { feesOwedInFeeAsset = feesOwedInBaseUsingFeeAssetDecimals; } else { uint256 rate = data.rateProvider.getRate(); feesOwedInFeeAsset = feesOwedInBaseUsingFeeAssetDecimals.mulDivDown(10 ** feeAssetDecimals, rate); } } // Zero out fees owed. state.feesOwedInBase = 0; // Transfer fee asset to payout address. feeAsset.safeTransferFrom(msg.sender, state.payoutAddress, feesOwedInFeeAsset); emit FeesClaimed(address(feeAsset), feesOwedInFeeAsset); } // ========================================= RATE FUNCTIONS ========================================= /** * @notice Get this BoringVault's current rate in the base. */ function getRate() public view returns (uint256 rate) { rate = accountantState.exchangeRate; } /** * @notice Get this BoringVault's current rate in the base. * @dev Revert if paused. */ function getRateSafe() external view returns (uint256 rate) { if (accountantState.isPaused) revert AccountantWithRateProviders__Paused(); rate = getRate(); } /** * @notice Get this BoringVault's current rate in the provided quote. * @dev `quote` must have its RateProviderData set, else this will revert. * @dev This function will lose precision if the exchange rate * decimals is greater than the quote's decimals. */ function getRateInQuote(ERC20 quote) public view returns (uint256 rateInQuote) { if (address(quote) == address(base)) { rateInQuote = accountantState.exchangeRate; } else { RateProviderData memory data = rateProviderData[quote]; uint8 quoteDecimals = ERC20(quote).decimals(); uint256 exchangeRateInQuoteDecimals = changeDecimals(accountantState.exchangeRate, decimals, quoteDecimals); if (data.isPeggedToBase) { rateInQuote = exchangeRateInQuoteDecimals; } else { uint256 quoteRate = data.rateProvider.getRate(); uint256 oneQuote = 10 ** quoteDecimals; rateInQuote = oneQuote.mulDivDown(exchangeRateInQuoteDecimals, quoteRate); } } } /** * @notice Get this BoringVault's current rate in the provided quote. * @dev `quote` must have its RateProviderData set, else this will revert. * @dev Revert if paused. */ function getRateInQuoteSafe(ERC20 quote) external view returns (uint256 rateInQuote) { if (accountantState.isPaused) revert AccountantWithRateProviders__Paused(); rateInQuote = getRateInQuote(quote); } // ========================================= INTERNAL HELPER FUNCTIONS ========================================= /** * @notice Used to change the decimals of precision used for an amount. */ function changeDecimals(uint256 amount, uint8 fromDecimals, uint8 toDecimals) internal pure returns (uint256) { if (fromDecimals == toDecimals) { return amount; } else if (fromDecimals < toDecimals) { return amount * 10 ** (toDecimals - fromDecimals); } else { return amount / 10 ** (fromDecimals - toDecimals); } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.25; import { ERC20 } from "@solmate/tokens/ERC20.sol"; import { WETH } from "@solmate/tokens/WETH.sol"; import { BoringVault } from "src/base/BoringVault.sol"; import { AccountantWithRateProviders } from "src/base/Roles/AccountantWithRateProviders.sol"; import { FixedPointMathLib } from "@solmate/utils/FixedPointMathLib.sol"; import { SafeTransferLib } from "@solmate/utils/SafeTransferLib.sol"; import { BeforeTransferHook } from "src/interfaces/BeforeTransferHook.sol"; import { Auth, Authority } from "@solmate/auth/Auth.sol"; import { ReentrancyGuard } from "@solmate/utils/ReentrancyGuard.sol"; /** * @title TellerWithMultiAssetSupport * @custom:security-contact [email protected] */ contract TellerWithMultiAssetSupport is Auth, BeforeTransferHook, ReentrancyGuard { using FixedPointMathLib for uint256; using SafeTransferLib for ERC20; using SafeTransferLib for WETH; // ========================================= CONSTANTS ========================================= /** * @notice Native address used to tell the contract to handle native asset deposits. */ address internal constant NATIVE = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; /** * @notice The maximum possible share lock period. */ uint256 internal constant MAX_SHARE_LOCK_PERIOD = 3 days; // ========================================= STATE ========================================= /** * @notice Mapping ERC20s to an isSupported bool. */ mapping(ERC20 => bool) public isSupported; /** * @notice The deposit nonce used to map to a deposit hash. */ uint96 public depositNonce = 1; /** * @notice After deposits, shares are locked to the msg.sender's address * for `shareLockPeriod`. * @dev During this time all transfers from msg.sender will revert, and * deposits are refundable. */ uint64 public shareLockPeriod; /** * @notice Used to pause calls to `deposit` and `depositWithPermit`. */ bool public isPaused; /** * @dev Maps deposit nonce to keccak256(address receiver, address depositAsset, uint256 depositAmount, uint256 * shareAmount, uint256 timestamp, uint256 shareLockPeriod). */ mapping(uint256 => bytes32) public publicDepositHistory; /** * @notice Maps user address to the time their shares will be unlocked. */ mapping(address => uint256) public shareUnlockTime; //============================== ERRORS =============================== error TellerWithMultiAssetSupport__ShareLockPeriodTooLong(); error TellerWithMultiAssetSupport__SharesAreLocked(); error TellerWithMultiAssetSupport__SharesAreUnLocked(); error TellerWithMultiAssetSupport__BadDepositHash(); error TellerWithMultiAssetSupport__AssetNotSupported(); error TellerWithMultiAssetSupport__ZeroAssets(); error TellerWithMultiAssetSupport__MinimumMintNotMet(); error TellerWithMultiAssetSupport__MinimumAssetsNotMet(); error TellerWithMultiAssetSupport__PermitFailedAndAllowanceTooLow(); error TellerWithMultiAssetSupport__ZeroShares(); error TellerWithMultiAssetSupport__Paused(); //============================== EVENTS =============================== event Paused(); event Unpaused(); event AssetAdded(address indexed asset); event AssetRemoved(address indexed asset); event Deposit( uint256 indexed nonce, address indexed receiver, address indexed depositAsset, uint256 depositAmount, uint256 shareAmount, uint256 depositTimestamp, uint256 shareLockPeriodAtTimeOfDeposit ); event BulkDeposit(address indexed asset, uint256 depositAmount); event BulkWithdraw(address indexed asset, uint256 shareAmount); event DepositRefunded(uint256 indexed nonce, bytes32 depositHash, address indexed user); //============================== IMMUTABLES =============================== /** * @notice The BoringVault this contract is working with. */ BoringVault public immutable vault; /** * @notice The AccountantWithRateProviders this contract is working with. */ AccountantWithRateProviders public immutable accountant; /** * @notice One share of the BoringVault. */ uint256 internal immutable ONE_SHARE; constructor(address _owner, address _vault, address _accountant) Auth(_owner, Authority(address(0))) { vault = BoringVault(payable(_vault)); ONE_SHARE = 10 ** vault.decimals(); accountant = AccountantWithRateProviders(_accountant); } // ========================================= ADMIN FUNCTIONS ========================================= /** * @notice Pause this contract, which prevents future calls to `deposit` and `depositWithPermit`. * @dev Callable by MULTISIG_ROLE. */ function pause() external requiresAuth { isPaused = true; emit Paused(); } /** * @notice Unpause this contract, which allows future calls to `deposit` and `depositWithPermit`. * @dev Callable by MULTISIG_ROLE. */ function unpause() external requiresAuth { isPaused = false; emit Unpaused(); } /** * @notice Adds this asset as a deposit asset. * @dev The accountant must also support pricing this asset, else the `deposit` call will revert. * @dev Callable by OWNER_ROLE. */ function addAsset(ERC20 asset) external requiresAuth { isSupported[asset] = true; emit AssetAdded(address(asset)); } /** * @notice Removes this asset as a deposit asset. * @dev Callable by OWNER_ROLE. */ function removeAsset(ERC20 asset) external requiresAuth { isSupported[asset] = false; emit AssetRemoved(address(asset)); } /** * @notice Sets the share lock period. * @dev This not only locks shares to the user address, but also serves as the pending deposit period, where * deposits can be reverted. * @dev If a new shorter share lock period is set, users with pending share locks could make a new deposit to * receive 1 wei shares, * and have their shares unlock sooner than their original deposit allows. This state would allow for the user * deposit to be refunded, * but only if they have not transferred their shares out of there wallet. This is an accepted limitation, and * should be known when decreasing * the share lock period. * @dev Callable by OWNER_ROLE. */ function setShareLockPeriod(uint64 _shareLockPeriod) external requiresAuth { if (_shareLockPeriod > MAX_SHARE_LOCK_PERIOD) revert TellerWithMultiAssetSupport__ShareLockPeriodTooLong(); shareLockPeriod = _shareLockPeriod; } // ========================================= BeforeTransferHook FUNCTIONS ========================================= /** * @notice Implement beforeTransfer hook to check if shares are locked. */ function beforeTransfer(address from) public view { if (shareUnlockTime[from] > block.timestamp) revert TellerWithMultiAssetSupport__SharesAreLocked(); } // ========================================= REVERT DEPOSIT FUNCTIONS ========================================= /** * @notice Allows DEPOSIT_REFUNDER_ROLE to revert a pending deposit. * @dev Once a deposit share lock period has passed, it can no longer be reverted. * @dev It is possible the admin does not setup the BoringVault to call the transfer hook, * but this contract can still be saving share lock state. In the event this happens * deposits are still refundable if the user has not transferred their shares. * But there is no guarantee that the user has not transferred their shares. * @dev Callable by STRATEGIST_MULTISIG_ROLE. */ function refundDeposit( uint256 nonce, address receiver, address depositAsset, uint256 depositAmount, uint256 shareAmount, uint256 depositTimestamp, uint256 shareLockUpPeriodAtTimeOfDeposit ) external requiresAuth { if ((block.timestamp - depositTimestamp) > shareLockUpPeriodAtTimeOfDeposit) { // Shares are already unlocked, so we can not revert deposit. revert TellerWithMultiAssetSupport__SharesAreUnLocked(); } bytes32 depositHash = keccak256( abi.encode( receiver, depositAsset, depositAmount, shareAmount, depositTimestamp, shareLockUpPeriodAtTimeOfDeposit ) ); if (publicDepositHistory[nonce] != depositHash) revert TellerWithMultiAssetSupport__BadDepositHash(); // Delete hash to prevent refund gas. delete publicDepositHistory[nonce]; // Burn shares and refund assets to receiver. vault.exit(receiver, ERC20(depositAsset), depositAmount, receiver, shareAmount); emit DepositRefunded(nonce, depositHash, receiver); } // ========================================= USER FUNCTIONS ========================================= /** * @notice Allows users to deposit into the BoringVault, if this contract is not paused. * @dev Publicly callable. */ function deposit( ERC20 depositAsset, uint256 depositAmount, uint256 minimumMint ) external requiresAuth nonReentrant returns (uint256 shares) { if (isPaused) revert TellerWithMultiAssetSupport__Paused(); if (!isSupported[depositAsset]) revert TellerWithMultiAssetSupport__AssetNotSupported(); shares = _erc20Deposit(depositAsset, depositAmount, minimumMint, msg.sender); _afterPublicDeposit(msg.sender, depositAsset, depositAmount, shares, shareLockPeriod); } /** * @notice Allows users to deposit into BoringVault using permit. * @dev Publicly callable. */ function depositWithPermit( ERC20 depositAsset, uint256 depositAmount, uint256 minimumMint, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external requiresAuth nonReentrant returns (uint256 shares) { if (isPaused) revert TellerWithMultiAssetSupport__Paused(); if (!isSupported[depositAsset]) revert TellerWithMultiAssetSupport__AssetNotSupported(); // solhint-disable-next-line no-empty-blocks try depositAsset.permit(msg.sender, address(vault), depositAmount, deadline, v, r, s) { } catch { if (depositAsset.allowance(msg.sender, address(vault)) < depositAmount) { revert TellerWithMultiAssetSupport__PermitFailedAndAllowanceTooLow(); } } shares = _erc20Deposit(depositAsset, depositAmount, minimumMint, msg.sender); _afterPublicDeposit(msg.sender, depositAsset, depositAmount, shares, shareLockPeriod); } /** * @notice Allows on ramp role to deposit into this contract. * @dev Does NOT support native deposits. * @dev Callable by SOLVER_ROLE. */ function bulkDeposit( ERC20 depositAsset, uint256 depositAmount, uint256 minimumMint, address to ) external requiresAuth nonReentrant returns (uint256 shares) { if (!isSupported[depositAsset]) revert TellerWithMultiAssetSupport__AssetNotSupported(); shares = _erc20Deposit(depositAsset, depositAmount, minimumMint, to); emit BulkDeposit(address(depositAsset), depositAmount); } /** * @notice Allows off ramp role to withdraw from this contract. * @dev Callable by SOLVER_ROLE. */ function bulkWithdraw( ERC20 withdrawAsset, uint256 shareAmount, uint256 minimumAssets, address to ) external requiresAuth returns (uint256 assetsOut) { if (!isSupported[withdrawAsset]) revert TellerWithMultiAssetSupport__AssetNotSupported(); if (shareAmount == 0) revert TellerWithMultiAssetSupport__ZeroShares(); assetsOut = shareAmount.mulDivDown(accountant.getRateInQuoteSafe(withdrawAsset), ONE_SHARE); if (assetsOut < minimumAssets) revert TellerWithMultiAssetSupport__MinimumAssetsNotMet(); vault.exit(to, withdrawAsset, assetsOut, msg.sender, shareAmount); emit BulkWithdraw(address(withdrawAsset), shareAmount); } // ========================================= INTERNAL HELPER FUNCTIONS ========================================= /** * @notice Implements a common ERC20 deposit into BoringVault. */ function _erc20Deposit( ERC20 depositAsset, uint256 depositAmount, uint256 minimumMint, address to ) internal returns (uint256 shares) { if (depositAmount == 0) revert TellerWithMultiAssetSupport__ZeroAssets(); shares = depositAmount.mulDivDown(ONE_SHARE, accountant.getRateInQuoteSafe(depositAsset)); if (shares < minimumMint) revert TellerWithMultiAssetSupport__MinimumMintNotMet(); vault.enter(msg.sender, depositAsset, depositAmount, to, shares); } /** * @notice Handle share lock logic, and event. */ function _afterPublicDeposit( address user, ERC20 depositAsset, uint256 depositAmount, uint256 shares, uint256 currentShareLockPeriod ) internal { shareUnlockTime[user] = block.timestamp + currentShareLockPeriod; uint256 nonce = depositNonce; publicDepositHistory[nonce] = keccak256(abi.encode(user, depositAsset, depositAmount, shares, block.timestamp, currentShareLockPeriod)); depositNonce++; emit Deposit(nonce, user, address(depositAsset), depositAmount, shares, block.timestamp, currentShareLockPeriod); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.25; interface BeforeTransferHook { function beforeTransfer(address from) external view; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.8.0; interface IRateProvider { function getRate() external view returns (uint256); }
{ "evmVersion": "cancun", "libraries": {}, "metadata": { "appendCBOR": true, "bytecodeHash": "ipfs", "useLiteralContent": false }, "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "remappings": [ "@solmate/=lib/solmate/src/", "@forge-std/=lib/forge-std/src/", "forge-std/=lib/forge-std/src/", "@ds-test/=lib/forge-std/lib/ds-test/src/", "ds-test/=lib/forge-std/lib/ds-test/src/", "@openzeppelin/=lib/openzeppelin-contracts/", "@ion-protocol/=lib/nucleus-boring-vault/lib/ion-protocol/src/", "@layerzerolabs/=node_modules/@layerzerolabs/", "@executooor/=lib/executooor/contracts/", "@uniswap-core/=lib/v3-core/contracts/", "@uniswap-periphery/=lib/v3-periphery/contracts/", "1inch-v2-contracts/=lib/1inch-v2-contracts/contracts/", "@axelar-network/=node_modules/@axelar-network/", "@balancer-labs/v2-interfaces/=lib/nucleus-boring-vault/lib/ion-protocol/lib/balancer-v2-monorepo/pkg/interfaces/", "@balancer-labs/v2-pool-stable/=lib/nucleus-boring-vault/lib/ion-protocol/lib/balancer-v2-monorepo/pkg/pool-stable/", "@chainlink/=node_modules/@chainlink/", "@chainlink/contracts/=lib/nucleus-boring-vault/lib/ion-protocol/lib/chainlink/contracts/", "@eth-optimism/=node_modules/@eth-optimism/", "@openzeppelin/contracts-upgradeable/=lib/nucleus-boring-vault/lib/ion-protocol/lib/openzeppelin-contracts-upgradeable/contracts/", "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "@uniswap/v3-core/=lib/nucleus-boring-vault/lib/ion-protocol/lib/v3-core/", "@uniswap/v3-periphery/=lib/nucleus-boring-vault/lib/ion-protocol/lib/v3-periphery/", "balancer-v2-monorepo/=lib/nucleus-boring-vault/lib/ion-protocol/lib/", "chainlink/=lib/nucleus-boring-vault/lib/ion-protocol/lib/chainlink/", "createx/=lib/nucleus-boring-vault/lib/createx/src/", "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/", "executooor/=lib/executooor/contracts/", "forge-safe/=lib/nucleus-boring-vault/lib/ion-protocol/lib/forge-safe/", "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/", "hardhat-deploy/=node_modules/hardhat-deploy/", "ion-protocol/=lib/nucleus-boring-vault/lib/ion-protocol/", "nucleus-boring-vault/=lib/nucleus-boring-vault/", "openzeppelin-contracts-upgradeable/=lib/nucleus-boring-vault/lib/ion-protocol/lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "openzeppelin/=lib/nucleus-boring-vault/lib/createx/lib/openzeppelin-contracts/contracts/", "pendle-core-v2-public/=lib/nucleus-boring-vault/lib/ion-protocol/lib/pendle-core-v2-public/contracts/", "solady/=lib/nucleus-boring-vault/lib/ion-protocol/lib/solady/", "solarray/=lib/nucleus-boring-vault/lib/ion-protocol/lib/solarray/src/", "solidity-bytes-utils/=node_modules/solidity-bytes-utils/", "solidity-stringutils/=lib/nucleus-boring-vault/lib/ion-protocol/lib/forge-safe/lib/surl/lib/solidity-stringutils/", "solmate/=lib/solmate/src/", "surl/=lib/nucleus-boring-vault/lib/ion-protocol/lib/forge-safe/lib/surl/", "v3-core/=lib/v3-core/", "v3-periphery/=lib/v3-periphery/contracts/" ], "viaIR": true }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"contract IAtomicQueueUCP","name":"_queue","type":"address"},{"internalType":"address[]","name":"approvedSolvers","type":"address[]"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"MultiAssetAtomicSolverRedeem___AlreadyInSolveContext","type":"error"},{"inputs":[{"internalType":"address","name":"vault","type":"address"},{"internalType":"address","name":"teller","type":"address"}],"name":"MultiAssetAtomicSolverRedeem___BoringVaultTellerMismatch","type":"error"},{"inputs":[{"internalType":"address","name":"wantAsset","type":"address"}],"name":"MultiAssetAtomicSolverRedeem___DuplicateWantAsset","type":"error"},{"inputs":[],"name":"MultiAssetAtomicSolverRedeem___FailedToSolve","type":"error"},{"inputs":[{"internalType":"int256","name":"globalSlippagePriceMinimum","type":"int256"},{"internalType":"int256[]","name":"balanceDeltas","type":"int256[]"},{"internalType":"int256","name":"actualSlippage","type":"int256"}],"name":"MultiAssetAtomicSolverRedeem___GlobalSlippageThresholdExceeded","type":"error"},{"inputs":[{"internalType":"uint256","name":"redeemedAmount","type":"uint256"},{"internalType":"uint256","name":"requiredAmount","type":"uint256"}],"name":"MultiAssetAtomicSolverRedeem___InsufficientAssetsRedeemed","type":"error"},{"inputs":[{"internalType":"uint256","name":"offerNeeded","type":"uint256"},{"internalType":"uint256","name":"currentBalance","type":"uint256"},{"internalType":"uint256","name":"maxAllowableOfferAmountFromSolver","type":"uint256"}],"name":"MultiAssetAtomicSolverRedeem___InsufficientOfferAmount","type":"error"},{"inputs":[],"name":"MultiAssetAtomicSolverRedeem___InvalidCaller","type":"error"},{"inputs":[],"name":"MultiAssetAtomicSolverRedeem___MismatchedArrayLengths","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"},{"internalType":"address","name":"queue","type":"address"}],"name":"MultiAssetAtomicSolverRedeem___OnlyQueue","type":"error"},{"inputs":[],"name":"MultiAssetAtomicSolverRedeem___OnlyRedeemAllowed","type":"error"},{"inputs":[{"internalType":"uint256","name":"actualAssets","type":"uint256"},{"internalType":"uint256","name":"maxAssets","type":"uint256"}],"name":"MultiAssetAtomicSolverRedeem___SolveMaxAssetsExceeded","type":"error"},{"inputs":[],"name":"MultiAssetAtomicSolverRedeem___WrongInitiator","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[{"internalType":"bytes","name":"runData","type":"bytes"},{"internalType":"address","name":"initiator","type":"address"},{"internalType":"contract ERC20","name":"offer","type":"address"},{"internalType":"contract ERC20","name":"want","type":"address"},{"internalType":"uint256","name":"offerReceived","type":"uint256"},{"internalType":"uint256","name":"wantApprovalAmount","type":"uint256"}],"name":"finishSolve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isApprovedSolver","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract ERC20","name":"offer","type":"address"},{"components":[{"internalType":"contract ERC20","name":"asset","type":"address"},{"internalType":"uint256","name":"minimumAssetsOut","type":"uint256"},{"internalType":"uint256","name":"maxAssets","type":"uint256"},{"internalType":"uint256","name":"excessAssetAmount","type":"uint256"},{"internalType":"bool","name":"useSolverBalanceFirst","type":"bool"},{"internalType":"address[]","name":"users","type":"address[]"},{"internalType":"uint256","name":"clearingPriceForAsset","type":"uint256"},{"internalType":"uint256","name":"maxAllowableOfferAmountFromSolver","type":"uint256"}],"internalType":"struct MultiAssetAtomicSolverRedeemUCP.WantAssetData[]","name":"wantAssets","type":"tuple[]"},{"internalType":"contract TellerWithMultiAssetSupport","name":"teller","type":"address"},{"internalType":"int256","name":"globalSlippagePriceMinimum","type":"int256"},{"internalType":"address","name":"redeemCurrencyForExcessOffer","type":"address"}],"name":"multiAssetRedeemSolve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"queue","outputs":[{"internalType":"contract IAtomicQueueUCP","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"solvers","type":"address[]"}],"name":"toggleApprovedSolvers","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
604060a060405234610197576121828038038061001b816101af565b92833981019160608284031261019757610034826101d4565b6020938484015160018060a01b039283821682036101975760408601516001600160401b039687821161019757019280601f8501121561019757835196871161019b576005938760051b898061008b8184016101af565b809b81520191830101928311610197578990818895949301905b838210610176575050505016801561015e575f80546001600160a01b03198116831782558516907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09080a36080525f5b845181101561012357828682841b87010151165f52600190818752845f208260ff19825416179055016100f5565b604051611f9990816101e9823960805181818161010f01528181610379015281816105530152818161087f0152818161154f015261160a0152f35b604051631e4fbdf760e01b81525f6004820152602490fd5b829394955091819261018882936101d4565b815201910187949392916100a5565b5f80fd5b634e487b7160e01b5f52604160045260245ffd5b6040519190601f01601f191682016001600160401b0381118382101761019b57604052565b51906001600160a01b03821682036101975756fe60806040526004361015610011575f80fd5b5f3560e01c80631644bcf5146108bb5780632ddd62ce146102e857806362218330146102ab578063715018a6146102545780638da5cb5b1461022d578063d87a482a1461013e578063e10d29ee146100fa5763f2fde38b14610071575f80fd5b346100f65760203660031901126100f65761008a611a23565b610092611bef565b6001600160a01b039081169081156100de575f54826001600160601b0360a01b8216175f55167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a3005b604051631e4fbdf760e01b81525f6004820152602490fd5b5f80fd5b346100f6575f3660031901126100f6576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b346100f6576020806003193601126100f65760043567ffffffffffffffff81116100f657366023820112156100f657806004013561017b81611a8b565b916101896040519384611a69565b81835260248484019260051b820101913683116100f6576024859201905b8382106102165782856101b8611bef565b5f5b8151811015610214576001600160a01b0390816101d78285611ac2565b51165f5260019182855260ff908160405f20541615906101f78487611ac2565b51165f5283865260405f209160ff198354169116179055016101ba565b005b82809161022284611a39565b8152019101906101a7565b346100f6575f3660031901126100f6575f546040516001600160a01b039091168152602090f35b346100f6575f3660031901126100f65761026c611bef565b5f80546001600160a01b0319811682556001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b346100f65760203660031901126100f6576001600160a01b036102cc611a23565b165f526001602052602060ff60405f2054166040519015158152f35b346100f65760c03660031901126100f65767ffffffffffffffff6004358181116100f657366023820112156100f65780600401359182116100f6576024810190828101903660248301116100f6576024356001600160a01b038116908190036100f6576044356001600160a01b03811690036100f6576064356001600160a01b03811690036100f65730036108a9577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031633036108625760209103126100f657803560028110156100f657806103d25760405163a903bc4d60e01b8152600490fd5b6001146103db57005b5f6020604051936103f582601f19601f8401160186611a69565b808552808286019485378401015260c0828051810103126100f6576002905110156100f6576040810151906001600160a01b03821682036100f657608081015160a0820151916001600160a01b03831683036100f65760c0015160405163fbfa77cf60e01b81529091906020816004816001600160a01b0388165afa908115610690575f91610833575b506001600160a01b0390811660443590911603610808578060a435116107e857506104b46064356001600160a01b0316611c46565b92949291159050610750576040516370a0823160e01b81526001600160a01b03868116600483015290939060209085906024908290606435165afa938415610690575f9461071c575b5061050a8560a435611b03565b841061069b5750505f905b816105e1575b505050505b60a43561052957005b6105449060a4359030906001600160a01b0316606435611d84565b60405163095ea7b360e01b81527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316600482015260a43560248201526020905f90604490826064355af13d15601f3d1160015f5114161716156105ab57005b60405162461bcd60e51b815260206004820152600e60248201526d1054141493d59157d1905253115160921b6044820152606490fd5b6105fb6020936105f66106459660a435611b03565b611bd1565b604051633e64ce9960e01b8152606480356001600160a01b0390811660048401526024830195909552604482019290925292861690830152909283919082905f9082906084820190565b03926001600160a01b03165af1801561069057610665575b80808061051b565b602090813d8311610689575b61067b8183611a69565b810103126100f6578161065d565b503d610671565b6040513d5f823e3d90fd5b6106d06106ae856105f68860a435611b03565b6106ca6106c56044356001600160a01b0316611c1a565b611bde565b90611d2a565b90801561070a5761070492604435926001600160a01b038916926001906106fa905f198401611d20565b0190151502611ea1565b90610515565b634e487b715f5260126020526024601cfd5b9093506020813d602011610748575b8161073860209383611a69565b810103126100f6575192866104fd565b3d915061072b565b92906107616106ae8360a435611b03565b92801561070a5761079f946020946105fb9261079692604435926001600160a01b038b16926001906106fa905f198401611d20565b9260a435611b03565b03926001600160a01b03165af18015610690576107bd575b50610520565b602090813d83116107e1575b6107d38183611a69565b810103126100f657816107b7565b503d6107c9565b604490604051906308a9e02b60e01b825260a43560048301526024820152fd5b6040516340d2153760e01b81526001600160a01b036044803582166004840152908516602483015290fd5b610855915060203d60201161085b575b61084d8183611a69565b810190611aa3565b8561047f565b503d610843565b60405163e34780db60e01b81523360048201526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000166024820152604490fd5b6040516312d4921560e31b8152600490fd5b346100f65760a03660031901126100f6576108d4611a23565b6024359067ffffffffffffffff82116100f657366023830112156100f65767ffffffffffffffff8260040135116100f657366024836004013560051b840101116100f6576044356001600160a01b03811681036100f657608435926001600160a01b03841684036100f657335f52600160205260ff60405f20541615611a1257604051634fb3ccc560e01b8152936020856004816001600160a01b0387165afa948515610690575f956119f1575b506040516001600160601b03198560601b166020820152601481526109a681611a4d565b805160209182012060405163313ce56760e01b815291826004816001600160a01b038b165afa918215610690575f926119d0575b505d6109e98260040135611a8b565b906109f76040519283611a69565b6004830135808352610a0890611a8b565b601f190136602084013760048301356001810110610d9757610a306001846004013501611a8b565b95610a3e6040519788611a69565b6004840135600101808852610a5290611a8b565b601f1901366020890137610a698460040135611a8b565b90610a776040519283611a69565b6004850135808352601f1990610a8c90611a8b565b013660208401375f915b856004013583106116de5750506040516370a0823160e01b8152336004820152906020826024816001600160a01b038b165afa918215610690575f926116a8575b50610ae29088611ac2565b525f5b8360040135811061110957506001600160a01b03811615611036576040516370a0823160e01b81523060048201526020816024816001600160a01b038a165afa908115610690575f91611004575b5060405191633e64ce9960e01b835260018060a01b0316600483015260248201525f60448201523360648201526020816084815f60018060a01b0389165af1801561069057610fd9575b505b60405163fbfa77cf60e01b81525f9290916020836004816001600160a01b0389165afa908115610690576004935f92610fb8575b506020610bc86001600160a01b038416611c1a565b604051634fb3ccc560e01b815290979095869182906001600160a01b03165afa938415610690576004946020915f91610f9b575b506040516333cd77e760e11b815295869182906001600160a01b03165afa938415610690575f94610f67575b50915f925b81600401358410610ddf5750506040516370a0823160e01b815233600482015290602090829060249082906001600160a01b03165afa908115610690575f91610dab575b50610c8a610c9191610c83848a611ac2565b5190611b7c565b9187611ac2565b5284515f1990818101908111610d9757610cac5f9188611ac2565b511260011902600118908651908101908111610d9757610cfc94610cf693610ce8610cda610cf0948b611ac2565b51928360ff1d918291611bde565b930118611e09565b90611b94565b90611bb6565b918260643513610d33575f8260405160208101916001600160601b03199060601b16825260148152610d2d81611a4d565b5190205d005b6040516001629772bb60e01b031981526064803560048301526060602483015282519082018190525f949193506084840192602001905b808610610d7f57505082935060448301520390fd5b90926020806001928651815201940195019490610d6a565b634e487b7160e01b5f52601160045260245ffd5b90506020813d602011610dd7575b81610dc660209383611a69565b810103126100f65751610c8a610c71565b3d9150610db9565b9092610dfb610df682866004013560248801611b10565b611b32565b6040516370a0823160e01b815233600482015290966020826024816001600160a01b038c165afa918215610690578b8985948c935f91610f25575b50610e9d84610e8c610cf69686610e86610e7a5f98610e61610eab99610eb99f9c8d610c8391611ac2565b610e6b8c86611ac2565b526001600160a01b0316611c46565b509a9150508992611ac2565b51611cb1565b94610e978a8c611ac2565b51611d3d565b8b8460ff1d80860118611e09565b911260011902600118611b94565b9560405160208101916001600160601b03199060601b16825260148152610edf81611a4d565b51902090600182018211610d9757600282016001830111610d9757600382016002830111610d97575f600383826001955d828582015d82600282015d015d019290610c2d565b9550505050506020823d602011610f5f575b81610f4460209383611a69565b810103126100f657905182919089908c908a90610e9d610e36565b3d9150610f37565b9093506020813d602011610f93575b81610f8360209383611a69565b810103126100f657519288610c28565b3d9150610f76565b610fb29150823d841161085b5761084d8183611a69565b8a610bfc565b610fd291925060203d60201161085b5761084d8183611a69565b9088610bb3565b602090813d8311610ffd575b610fef8183611a69565b810103126100f65785610b7d565b503d610fe5565b90506020813d60201161102e575b8161101f60209383611a69565b810103126100f6575187610b33565b3d9150611012565b506040516370a0823160e01b81523060048201526020816024816001600160a01b0389165afa908115610690575f916110d7575b505f60446020926040519063a9059cbb60e01b8252336004830152602482015282885af13d15601f3d1160015f5114161716610b7f5760405162461bcd60e51b815260206004820152600f60248201526e1514905394d1915497d19052531151608a1b6044820152606490fd5b90506020813d602011611101575b816110f260209383611a69565b810103126100f657515f61106a565b3d91506110e5565b602061111d82866004013560248801611b10565b013590604061113482876004013560248901611b10565b01356111408286611ac2565b519060405193600160208601523360408601526060850152608084015260018060a01b03871660a084015260c083015260c082528160e081011067ffffffffffffffff60e0840111176116625760e082016040526111b36111a982876004013560248901611b10565b60a0810190611b46565b15159050611509576111d0610df682876004013560248901611b10565b60c0838051810103126100f6576002602084015110156100f65760408301516001600160a01b03811681036100f65760a0840151936001600160a01b03851685036100f65760c0015160405163fbfa77cf60e01b81529094906020816004816001600160a01b0386165afa908115610690575f916114ea575b506001600160a01b03908116908b16036114bf576001600160a01b038316948a9061127387611c46565b9392949190505f146113ec57506040516370a0823160e01b81526001600160a01b038616600482015297602090899060249082905afa978815610690575f986113b8575b508288106113675750505f905b816112da575b5050505050600191505b01610ae5565b6112e960209596975f92611bd1565b604051633e64ce9960e01b81526001600160a01b0397881660048201526024810193909352604483015292851660648201529384926084928492165af180156106905761133c575b8080808085946112ca565b602090813d8311611360575b6113528183611a69565b810103126100f65787611331565b503d611348565b61138a8d6106ca6106c561137b8c88611bd1565b926001600160a01b0316611c1a565b90801561070a576113b2928e926001600160a01b038816926001906106fa905f198401611d20565b906112c4565b9097506020813d6020116113e4575b816113d460209383611a69565b810103126100f65751968e6112b7565b3d91506113c7565b6114129192969798506106c561140c9160018060a09997991b0316611c1a565b85611d2a565b94811561070a576020955f9261143f928f926001600160a01b038716926001906106fa905f198401611d20565b604051633e64ce9960e01b81526001600160a01b039788166004820152602481019190915260448101949094529085166064840152919384926084928492165af1801561069057611494575b506001906112d4565b602090813d83116114b8575b6114aa8183611a69565b810103126100f6578761148b565b503d6114a0565b6040516340d2153760e01b81526001600160a01b038b81166004830152919091166024820152604490fd5b611503915060203d60201161085b5761084d8183611a69565b8c611249565b61151e610df682876004013560248901611b10565b916115346111a983886004013560248a01611b10565b909160c061154a858a6004013560248c01611b10565b0135917f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03163b156100f657604051633ea1420760e11b81526001600160a01b03808d166004830152909616602487015260c0604487015260c486018190529192859260e484019291905f905b80821061167657505050602091825f9585936003198585030160648601528051928391828652018685015e828201850187905230608485015260a4840152601f01601f191601030181837f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165af1801561069057611648575b600191506112d4565b67ffffffffffffffff82116116625760019160405261163f565b634e487b7160e01b5f52604160045260245ffd5b91959450919260019060209081906001600160a01b036116958a611a39565b16815201960192018794959392916115be565b9091506020813d6020116116d6575b816116c460209383611a69565b810103126100f6575190610ae2610ad7565b3d91506116b7565b90915f5b81811061197757506116ff610df682886004013560248a01611b10565b604051634104b9ed60e11b81526001600160a01b039182166004820152906020908290602490829088165afa908115610690575f91611945575b506117448287611ac2565b5261174f8186611ac2565b51156119335761176a610df682886004013560248a01611b10565b90606061177f82896004013560248b01611b10565b0135916080611796838a6004013560248c01611b10565b01359081151582036100f65760e06117b6848b6004013560248d01611b10565b01359160405160208101906001600160601b03198460601b168252601481526117de81611a4d565b51902090600182018211610d9757600282016001830111610d9757600382016002830111610d975760405163313ce56760e01b815292602090849060049082906001600160a01b03165afa908115610690576024966003945f93611902575b50835d600183015d600282015d015d60206001600160a01b0361186a610df68460048c0135878d01611b10565b16604051938480926370a0823160e01b82523360048301525afa8015610690575f906118cf575b6001925061189f828c611ac2565b52818060a01b036118bb610df6838a6004013560248c01611b10565b166118c68285611ac2565b52019190610a96565b506020823d6020116118fa575b816118e960209383611a69565b810103126100f65760019151611891565b3d91506118dc565b61192591935060203d60201161192c575b61191d8183611a69565b810190611aea565b915f61183d565b503d611913565b60405163121d85b560e11b8152600490fd5b90506020813d60201161196f575b8161196060209383611a69565b810103126100f657518a611739565b3d9150611953565b6001600160a01b03611994610df68460048b013560248c01611b10565b166001600160a01b036119a78386611ac2565b511681146119b857506001016116e2565b6024906040519063096449b160e01b82526004820152fd5b6119ea91925060203d60201161192c5761191d8183611a69565b90876109da565b611a0b91955060203d60201161085b5761084d8183611a69565b9385610982565b637e94ab9360e11b60805260046080fd5b600435906001600160a01b03821682036100f657565b35906001600160a01b03821682036100f657565b6040810190811067ffffffffffffffff82111761166257604052565b90601f8019910116810190811067ffffffffffffffff82111761166257604052565b67ffffffffffffffff81116116625760051b60200190565b908160209103126100f657516001600160a01b03811681036100f65790565b8051821015611ad65760209160051b010190565b634e487b7160e01b5f52603260045260245ffd5b908160209103126100f6575160ff811681036100f65790565b91908201809211610d9757565b9190811015611ad65760051b8101359060fe19813603018212156100f6570190565b356001600160a01b03811681036100f65790565b903590601e19813603018212156100f6570180359067ffffffffffffffff82116100f657602001918160051b360383136100f657565b81810392915f138015828513169184121617610d9757565b81810292915f8212600160ff1b821416610d97578184051490151715610d9757565b9190915f8382019384129112908015821691151617610d9757565b91908203918211610d9757565b60ff16604d8111610d9757600a0a90565b5f546001600160a01b03163303611c0257565b60405163118cdaa760e01b8152336004820152602490fd5b60405160208101916001600160601b03199060601b16825260148152611c3f81611a4d565b5190205c90565b60405160208101916001600160601b03199060601b16825260148152611c6b81611a4d565b51902060018101808211610d97576002820192838211610d97576003830192838511610d97575c93915c92915c915c90565b9060ff8091169116039060ff8211610d9757565b9160ff811660ff83168181145f14611cca575050505090565b1015611ce4576106c5611ce19392610cf092611c9d565b90565b6106c590611cf192611c9d565b908115611d0c57600160ff1b81145f19831416610d97570590565b634e487b7160e01b5f52601260045260245ffd5b8115611d0c570490565b81810292918115918404141715610d9757565b909160ff811660ff84168181145f14611d5857505050905090565b1015611d6e576106c5611ce1936106ca92611c9d565b6106c5611d7e91611ce194611c9d565b90611d20565b915f8093602095606494604051946323b872dd60e01b865260018060a01b03809216600487015216602485015260448401525af13d15601f3d1160015f511416171615611dcd57565b60405162461bcd60e51b81526020600482015260146024820152731514905394d1915497d19493d357d1905253115160621b6044820152606490fd5b91818302915f1981850993838086109503948086039514611e945784831115611e7c5790829109815f038216809204600280826003021880830282030280830282030280830282030280830282030280830282030280920290030293600183805f03040190848311900302920304170290565b82634e487b715f52156003026011186020526024601cfd5b505090611ce19250611d20565b6040516370a0823160e01b81523060048201529093909290916020846024816001600160a01b0387165afa938415610690575f94611f2f575b5084841015611f2857611eed8486611bd1565b93818511611f0457505090611ce192913091611d84565b6064918691604051926311314cb960e01b8452600484015260248301526044820152fd5b5050505090565b9093506020813d602011611f5b575b81611f4b60209383611a69565b810103126100f65751925f611eda565b3d9150611f3e56fea2646970667358221220bdf8ddcadd5d274f0bb4bef26d6fa68671da194ec2d41960ade5a0e45b5042ed64736f6c634300081900330000000000000000000000006e6a79c033ebee27c80444daca7f9aed8bb06045000000000000000000000000228c44bb4885c6633f4b6c83f14622f37d5112e5000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000010000000000000000000000004dfa7088727a8683da8e56f83b615688dbe93ec7
Deployed Bytecode
0x60806040526004361015610011575f80fd5b5f3560e01c80631644bcf5146108bb5780632ddd62ce146102e857806362218330146102ab578063715018a6146102545780638da5cb5b1461022d578063d87a482a1461013e578063e10d29ee146100fa5763f2fde38b14610071575f80fd5b346100f65760203660031901126100f65761008a611a23565b610092611bef565b6001600160a01b039081169081156100de575f54826001600160601b0360a01b8216175f55167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a3005b604051631e4fbdf760e01b81525f6004820152602490fd5b5f80fd5b346100f6575f3660031901126100f6576040517f000000000000000000000000228c44bb4885c6633f4b6c83f14622f37d5112e56001600160a01b03168152602090f35b346100f6576020806003193601126100f65760043567ffffffffffffffff81116100f657366023820112156100f657806004013561017b81611a8b565b916101896040519384611a69565b81835260248484019260051b820101913683116100f6576024859201905b8382106102165782856101b8611bef565b5f5b8151811015610214576001600160a01b0390816101d78285611ac2565b51165f5260019182855260ff908160405f20541615906101f78487611ac2565b51165f5283865260405f209160ff198354169116179055016101ba565b005b82809161022284611a39565b8152019101906101a7565b346100f6575f3660031901126100f6575f546040516001600160a01b039091168152602090f35b346100f6575f3660031901126100f65761026c611bef565b5f80546001600160a01b0319811682556001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b346100f65760203660031901126100f6576001600160a01b036102cc611a23565b165f526001602052602060ff60405f2054166040519015158152f35b346100f65760c03660031901126100f65767ffffffffffffffff6004358181116100f657366023820112156100f65780600401359182116100f6576024810190828101903660248301116100f6576024356001600160a01b038116908190036100f6576044356001600160a01b03811690036100f6576064356001600160a01b03811690036100f65730036108a9577f000000000000000000000000228c44bb4885c6633f4b6c83f14622f37d5112e56001600160a01b031633036108625760209103126100f657803560028110156100f657806103d25760405163a903bc4d60e01b8152600490fd5b6001146103db57005b5f6020604051936103f582601f19601f8401160186611a69565b808552808286019485378401015260c0828051810103126100f6576002905110156100f6576040810151906001600160a01b03821682036100f657608081015160a0820151916001600160a01b03831683036100f65760c0015160405163fbfa77cf60e01b81529091906020816004816001600160a01b0388165afa908115610690575f91610833575b506001600160a01b0390811660443590911603610808578060a435116107e857506104b46064356001600160a01b0316611c46565b92949291159050610750576040516370a0823160e01b81526001600160a01b03868116600483015290939060209085906024908290606435165afa938415610690575f9461071c575b5061050a8560a435611b03565b841061069b5750505f905b816105e1575b505050505b60a43561052957005b6105449060a4359030906001600160a01b0316606435611d84565b60405163095ea7b360e01b81527f000000000000000000000000228c44bb4885c6633f4b6c83f14622f37d5112e56001600160a01b0316600482015260a43560248201526020905f90604490826064355af13d15601f3d1160015f5114161716156105ab57005b60405162461bcd60e51b815260206004820152600e60248201526d1054141493d59157d1905253115160921b6044820152606490fd5b6105fb6020936105f66106459660a435611b03565b611bd1565b604051633e64ce9960e01b8152606480356001600160a01b0390811660048401526024830195909552604482019290925292861690830152909283919082905f9082906084820190565b03926001600160a01b03165af1801561069057610665575b80808061051b565b602090813d8311610689575b61067b8183611a69565b810103126100f6578161065d565b503d610671565b6040513d5f823e3d90fd5b6106d06106ae856105f68860a435611b03565b6106ca6106c56044356001600160a01b0316611c1a565b611bde565b90611d2a565b90801561070a5761070492604435926001600160a01b038916926001906106fa905f198401611d20565b0190151502611ea1565b90610515565b634e487b715f5260126020526024601cfd5b9093506020813d602011610748575b8161073860209383611a69565b810103126100f6575192866104fd565b3d915061072b565b92906107616106ae8360a435611b03565b92801561070a5761079f946020946105fb9261079692604435926001600160a01b038b16926001906106fa905f198401611d20565b9260a435611b03565b03926001600160a01b03165af18015610690576107bd575b50610520565b602090813d83116107e1575b6107d38183611a69565b810103126100f657816107b7565b503d6107c9565b604490604051906308a9e02b60e01b825260a43560048301526024820152fd5b6040516340d2153760e01b81526001600160a01b036044803582166004840152908516602483015290fd5b610855915060203d60201161085b575b61084d8183611a69565b810190611aa3565b8561047f565b503d610843565b60405163e34780db60e01b81523360048201526001600160a01b037f000000000000000000000000228c44bb4885c6633f4b6c83f14622f37d5112e5166024820152604490fd5b6040516312d4921560e31b8152600490fd5b346100f65760a03660031901126100f6576108d4611a23565b6024359067ffffffffffffffff82116100f657366023830112156100f65767ffffffffffffffff8260040135116100f657366024836004013560051b840101116100f6576044356001600160a01b03811681036100f657608435926001600160a01b03841684036100f657335f52600160205260ff60405f20541615611a1257604051634fb3ccc560e01b8152936020856004816001600160a01b0387165afa948515610690575f956119f1575b506040516001600160601b03198560601b166020820152601481526109a681611a4d565b805160209182012060405163313ce56760e01b815291826004816001600160a01b038b165afa918215610690575f926119d0575b505d6109e98260040135611a8b565b906109f76040519283611a69565b6004830135808352610a0890611a8b565b601f190136602084013760048301356001810110610d9757610a306001846004013501611a8b565b95610a3e6040519788611a69565b6004840135600101808852610a5290611a8b565b601f1901366020890137610a698460040135611a8b565b90610a776040519283611a69565b6004850135808352601f1990610a8c90611a8b565b013660208401375f915b856004013583106116de5750506040516370a0823160e01b8152336004820152906020826024816001600160a01b038b165afa918215610690575f926116a8575b50610ae29088611ac2565b525f5b8360040135811061110957506001600160a01b03811615611036576040516370a0823160e01b81523060048201526020816024816001600160a01b038a165afa908115610690575f91611004575b5060405191633e64ce9960e01b835260018060a01b0316600483015260248201525f60448201523360648201526020816084815f60018060a01b0389165af1801561069057610fd9575b505b60405163fbfa77cf60e01b81525f9290916020836004816001600160a01b0389165afa908115610690576004935f92610fb8575b506020610bc86001600160a01b038416611c1a565b604051634fb3ccc560e01b815290979095869182906001600160a01b03165afa938415610690576004946020915f91610f9b575b506040516333cd77e760e11b815295869182906001600160a01b03165afa938415610690575f94610f67575b50915f925b81600401358410610ddf5750506040516370a0823160e01b815233600482015290602090829060249082906001600160a01b03165afa908115610690575f91610dab575b50610c8a610c9191610c83848a611ac2565b5190611b7c565b9187611ac2565b5284515f1990818101908111610d9757610cac5f9188611ac2565b511260011902600118908651908101908111610d9757610cfc94610cf693610ce8610cda610cf0948b611ac2565b51928360ff1d918291611bde565b930118611e09565b90611b94565b90611bb6565b918260643513610d33575f8260405160208101916001600160601b03199060601b16825260148152610d2d81611a4d565b5190205d005b6040516001629772bb60e01b031981526064803560048301526060602483015282519082018190525f949193506084840192602001905b808610610d7f57505082935060448301520390fd5b90926020806001928651815201940195019490610d6a565b634e487b7160e01b5f52601160045260245ffd5b90506020813d602011610dd7575b81610dc660209383611a69565b810103126100f65751610c8a610c71565b3d9150610db9565b9092610dfb610df682866004013560248801611b10565b611b32565b6040516370a0823160e01b815233600482015290966020826024816001600160a01b038c165afa918215610690578b8985948c935f91610f25575b50610e9d84610e8c610cf69686610e86610e7a5f98610e61610eab99610eb99f9c8d610c8391611ac2565b610e6b8c86611ac2565b526001600160a01b0316611c46565b509a9150508992611ac2565b51611cb1565b94610e978a8c611ac2565b51611d3d565b8b8460ff1d80860118611e09565b911260011902600118611b94565b9560405160208101916001600160601b03199060601b16825260148152610edf81611a4d565b51902090600182018211610d9757600282016001830111610d9757600382016002830111610d97575f600383826001955d828582015d82600282015d015d019290610c2d565b9550505050506020823d602011610f5f575b81610f4460209383611a69565b810103126100f657905182919089908c908a90610e9d610e36565b3d9150610f37565b9093506020813d602011610f93575b81610f8360209383611a69565b810103126100f657519288610c28565b3d9150610f76565b610fb29150823d841161085b5761084d8183611a69565b8a610bfc565b610fd291925060203d60201161085b5761084d8183611a69565b9088610bb3565b602090813d8311610ffd575b610fef8183611a69565b810103126100f65785610b7d565b503d610fe5565b90506020813d60201161102e575b8161101f60209383611a69565b810103126100f6575187610b33565b3d9150611012565b506040516370a0823160e01b81523060048201526020816024816001600160a01b0389165afa908115610690575f916110d7575b505f60446020926040519063a9059cbb60e01b8252336004830152602482015282885af13d15601f3d1160015f5114161716610b7f5760405162461bcd60e51b815260206004820152600f60248201526e1514905394d1915497d19052531151608a1b6044820152606490fd5b90506020813d602011611101575b816110f260209383611a69565b810103126100f657515f61106a565b3d91506110e5565b602061111d82866004013560248801611b10565b013590604061113482876004013560248901611b10565b01356111408286611ac2565b519060405193600160208601523360408601526060850152608084015260018060a01b03871660a084015260c083015260c082528160e081011067ffffffffffffffff60e0840111176116625760e082016040526111b36111a982876004013560248901611b10565b60a0810190611b46565b15159050611509576111d0610df682876004013560248901611b10565b60c0838051810103126100f6576002602084015110156100f65760408301516001600160a01b03811681036100f65760a0840151936001600160a01b03851685036100f65760c0015160405163fbfa77cf60e01b81529094906020816004816001600160a01b0386165afa908115610690575f916114ea575b506001600160a01b03908116908b16036114bf576001600160a01b038316948a9061127387611c46565b9392949190505f146113ec57506040516370a0823160e01b81526001600160a01b038616600482015297602090899060249082905afa978815610690575f986113b8575b508288106113675750505f905b816112da575b5050505050600191505b01610ae5565b6112e960209596975f92611bd1565b604051633e64ce9960e01b81526001600160a01b0397881660048201526024810193909352604483015292851660648201529384926084928492165af180156106905761133c575b8080808085946112ca565b602090813d8311611360575b6113528183611a69565b810103126100f65787611331565b503d611348565b61138a8d6106ca6106c561137b8c88611bd1565b926001600160a01b0316611c1a565b90801561070a576113b2928e926001600160a01b038816926001906106fa905f198401611d20565b906112c4565b9097506020813d6020116113e4575b816113d460209383611a69565b810103126100f65751968e6112b7565b3d91506113c7565b6114129192969798506106c561140c9160018060a09997991b0316611c1a565b85611d2a565b94811561070a576020955f9261143f928f926001600160a01b038716926001906106fa905f198401611d20565b604051633e64ce9960e01b81526001600160a01b039788166004820152602481019190915260448101949094529085166064840152919384926084928492165af1801561069057611494575b506001906112d4565b602090813d83116114b8575b6114aa8183611a69565b810103126100f6578761148b565b503d6114a0565b6040516340d2153760e01b81526001600160a01b038b81166004830152919091166024820152604490fd5b611503915060203d60201161085b5761084d8183611a69565b8c611249565b61151e610df682876004013560248901611b10565b916115346111a983886004013560248a01611b10565b909160c061154a858a6004013560248c01611b10565b0135917f000000000000000000000000228c44bb4885c6633f4b6c83f14622f37d5112e56001600160a01b03163b156100f657604051633ea1420760e11b81526001600160a01b03808d166004830152909616602487015260c0604487015260c486018190529192859260e484019291905f905b80821061167657505050602091825f9585936003198585030160648601528051928391828652018685015e828201850187905230608485015260a4840152601f01601f191601030181837f000000000000000000000000228c44bb4885c6633f4b6c83f14622f37d5112e56001600160a01b03165af1801561069057611648575b600191506112d4565b67ffffffffffffffff82116116625760019160405261163f565b634e487b7160e01b5f52604160045260245ffd5b91959450919260019060209081906001600160a01b036116958a611a39565b16815201960192018794959392916115be565b9091506020813d6020116116d6575b816116c460209383611a69565b810103126100f6575190610ae2610ad7565b3d91506116b7565b90915f5b81811061197757506116ff610df682886004013560248a01611b10565b604051634104b9ed60e11b81526001600160a01b039182166004820152906020908290602490829088165afa908115610690575f91611945575b506117448287611ac2565b5261174f8186611ac2565b51156119335761176a610df682886004013560248a01611b10565b90606061177f82896004013560248b01611b10565b0135916080611796838a6004013560248c01611b10565b01359081151582036100f65760e06117b6848b6004013560248d01611b10565b01359160405160208101906001600160601b03198460601b168252601481526117de81611a4d565b51902090600182018211610d9757600282016001830111610d9757600382016002830111610d975760405163313ce56760e01b815292602090849060049082906001600160a01b03165afa908115610690576024966003945f93611902575b50835d600183015d600282015d015d60206001600160a01b0361186a610df68460048c0135878d01611b10565b16604051938480926370a0823160e01b82523360048301525afa8015610690575f906118cf575b6001925061189f828c611ac2565b52818060a01b036118bb610df6838a6004013560248c01611b10565b166118c68285611ac2565b52019190610a96565b506020823d6020116118fa575b816118e960209383611a69565b810103126100f65760019151611891565b3d91506118dc565b61192591935060203d60201161192c575b61191d8183611a69565b810190611aea565b915f61183d565b503d611913565b60405163121d85b560e11b8152600490fd5b90506020813d60201161196f575b8161196060209383611a69565b810103126100f657518a611739565b3d9150611953565b6001600160a01b03611994610df68460048b013560248c01611b10565b166001600160a01b036119a78386611ac2565b511681146119b857506001016116e2565b6024906040519063096449b160e01b82526004820152fd5b6119ea91925060203d60201161192c5761191d8183611a69565b90876109da565b611a0b91955060203d60201161085b5761084d8183611a69565b9385610982565b637e94ab9360e11b60805260046080fd5b600435906001600160a01b03821682036100f657565b35906001600160a01b03821682036100f657565b6040810190811067ffffffffffffffff82111761166257604052565b90601f8019910116810190811067ffffffffffffffff82111761166257604052565b67ffffffffffffffff81116116625760051b60200190565b908160209103126100f657516001600160a01b03811681036100f65790565b8051821015611ad65760209160051b010190565b634e487b7160e01b5f52603260045260245ffd5b908160209103126100f6575160ff811681036100f65790565b91908201809211610d9757565b9190811015611ad65760051b8101359060fe19813603018212156100f6570190565b356001600160a01b03811681036100f65790565b903590601e19813603018212156100f6570180359067ffffffffffffffff82116100f657602001918160051b360383136100f657565b81810392915f138015828513169184121617610d9757565b81810292915f8212600160ff1b821416610d97578184051490151715610d9757565b9190915f8382019384129112908015821691151617610d9757565b91908203918211610d9757565b60ff16604d8111610d9757600a0a90565b5f546001600160a01b03163303611c0257565b60405163118cdaa760e01b8152336004820152602490fd5b60405160208101916001600160601b03199060601b16825260148152611c3f81611a4d565b5190205c90565b60405160208101916001600160601b03199060601b16825260148152611c6b81611a4d565b51902060018101808211610d97576002820192838211610d97576003830192838511610d97575c93915c92915c915c90565b9060ff8091169116039060ff8211610d9757565b9160ff811660ff83168181145f14611cca575050505090565b1015611ce4576106c5611ce19392610cf092611c9d565b90565b6106c590611cf192611c9d565b908115611d0c57600160ff1b81145f19831416610d97570590565b634e487b7160e01b5f52601260045260245ffd5b8115611d0c570490565b81810292918115918404141715610d9757565b909160ff811660ff84168181145f14611d5857505050905090565b1015611d6e576106c5611ce1936106ca92611c9d565b6106c5611d7e91611ce194611c9d565b90611d20565b915f8093602095606494604051946323b872dd60e01b865260018060a01b03809216600487015216602485015260448401525af13d15601f3d1160015f511416171615611dcd57565b60405162461bcd60e51b81526020600482015260146024820152731514905394d1915497d19493d357d1905253115160621b6044820152606490fd5b91818302915f1981850993838086109503948086039514611e945784831115611e7c5790829109815f038216809204600280826003021880830282030280830282030280830282030280830282030280830282030280920290030293600183805f03040190848311900302920304170290565b82634e487b715f52156003026011186020526024601cfd5b505090611ce19250611d20565b6040516370a0823160e01b81523060048201529093909290916020846024816001600160a01b0387165afa938415610690575f94611f2f575b5084841015611f2857611eed8486611bd1565b93818511611f0457505090611ce192913091611d84565b6064918691604051926311314cb960e01b8452600484015260248301526044820152fd5b5050505090565b9093506020813d602011611f5b575b81611f4b60209383611a69565b810103126100f65751925f611eda565b3d9150611f3e56fea2646970667358221220bdf8ddcadd5d274f0bb4bef26d6fa68671da194ec2d41960ade5a0e45b5042ed64736f6c63430008190033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000006e6a79c033ebee27c80444daca7f9aed8bb06045000000000000000000000000228c44bb4885c6633f4b6c83f14622f37d5112e5000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000010000000000000000000000004dfa7088727a8683da8e56f83b615688dbe93ec7
-----Decoded View---------------
Arg [0] : _owner (address): 0x6E6a79C033ebEE27C80444DaCA7F9aed8BB06045
Arg [1] : _queue (address): 0x228C44Bb4885C6633F4b6C83f14622f37D5112E5
Arg [2] : approvedSolvers (address[]): 0x4dfa7088727a8683DA8E56F83B615688dbE93ec7
-----Encoded View---------------
5 Constructor Arguments found :
Arg [0] : 0000000000000000000000006e6a79c033ebee27c80444daca7f9aed8bb06045
Arg [1] : 000000000000000000000000228c44bb4885c6633f4b6c83f14622f37d5112e5
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000060
Arg [3] : 0000000000000000000000000000000000000000000000000000000000000001
Arg [4] : 0000000000000000000000004dfa7088727a8683da8e56f83b615688dbe93ec7
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 35 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.