HYPE Price: $39.32 (-1.20%)

Token

Hyperstable (USH)

Overview

Max Total Supply

2,187,634.683686196587772522 USH

Holders

994

Total Transfers

-

Market

Price

$1.00 @ 0.025433 HYPE

Onchain Market Cap

$2,187,634.68

Circulating Supply Market Cap

$2,187,064.00

Other Info

Token Contract (WITH 18 Decimals)

Loading...
Loading
Loading...
Loading
Loading...
Loading

OVERVIEW

USH is a crypto-backed, over-collateralized, and decentralized stablecoin.

Contract Source Code Verified (Exact Match)

Contract Name:
DebtToken

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 200 runs

Other Settings:
cancun EvmVersion
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {IERC3156FlashLender} from "@openzeppelin/contracts/interfaces/IERC3156FlashLender.sol";
import {IERC3156FlashBorrower} from "@openzeppelin/contracts/interfaces/IERC3156FlashBorrower.sol";
import {OwnableRoles} from "solady/auth/OwnableRoles.sol";
import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";
import {IDebtToken} from "../interfaces/IDebtToken.sol";

contract DebtToken is IDebtToken, IERC3156FlashLender, ERC20, OwnableRoles {
    using FixedPointMathLib for uint256;

    uint256 public constant MINTER_ROLE = _ROLE_0;
    uint256 public constant BURNER_ROLE = _ROLE_1;
    bytes32 public constant CALLBACK_SUCCESS = keccak256("ERC3156FlashBorrower.onFlashLoan");

    uint256 public flashMintLimit = 5_000_000e18; // 5M USH
    uint256 public flashMintFee = 0.01e18; // 1%
    address public feeReceiver;

    event NewFeeReceiver(address oldReceiver, address newReceiver);
    event NewFlashMintFee(uint256 oldFee, uint256 newFee);
    event NewFlashMintLimit(uint256 oldLimit, uint256 newLimit);

    error InvalidBorrowerCallback();
    error RepayNotApproved();
    error UnsupportedToken();
    error AmountAboveLimit();
    error InvalidFeeReceiver();

    constructor(string memory _name, string memory _symbol) ERC20(_name, _symbol) {
        _initializeOwner(msg.sender);
        feeReceiver = msg.sender;
    }

    function setFlashMintLimit(uint256 _newFlashMintLimit) external onlyOwner {
        emit NewFlashMintLimit(flashMintLimit, _newFlashMintLimit);

        flashMintLimit = _newFlashMintLimit;
    }

    function setFlashMintFee(uint256 _newFlashMintFee) external onlyOwner {
        emit NewFlashMintFee(flashMintFee, _newFlashMintFee);

        flashMintFee = _newFlashMintFee;
    }

    function setFeeReceiver(address _newFeeReceiver) external onlyOwner {
        if (_newFeeReceiver == address(0)) {
            revert InvalidFeeReceiver();
        }

        feeReceiver = _newFeeReceiver;

        emit NewFeeReceiver(feeReceiver, _newFeeReceiver);
    }

    function mint(address _to, uint256 _amount) external onlyRoles(MINTER_ROLE) {
        _mint(_to, _amount);
    }

    function burn(address _from, uint256 _amount) external onlyRoles(BURNER_ROLE) {
        _burn(_from, _amount);
    }

    function maxFlashLoan(address _token) external view override returns (uint256) {
        if (_token != address(this)) {
            return 0;
        }

        return _getFlashMintLimit();
    }

    function flashFee(address _token, uint256 _amount) external view override returns (uint256) {
        if (_token != address(this)) {
            revert UnsupportedToken();
        }

        return _flashFee(_amount);
    }

    function flashLoan(IERC3156FlashBorrower _receiver, address _token, uint256 _amount, bytes calldata _data)
        external
        override
        returns (bool)
    {
        if (_token != address(this)) {
            revert UnsupportedToken();
        }

        if (_amount > _getFlashMintLimit()) {
            revert AmountAboveLimit();
        }

        uint256 fee = _flashFee(_amount);

        _mint(address(_receiver), _amount);

        if (_receiver.onFlashLoan(msg.sender, address(this), _amount, fee, _data) != CALLBACK_SUCCESS) {
            revert InvalidBorrowerCallback();
        }

        _spendAllowance(address(_receiver), address(this), _amount + fee);

        _burn(address(_receiver), _amount);

        _transfer(address(_receiver), feeReceiver, fee);

        return true;
    }

    function _flashFee(uint256 _amount) internal view returns (uint256) {
        return _amount.mulWad(flashMintFee);
    }

    function _getFlashMintLimit() internal view returns (uint256) {
        uint256 left = type(uint256).max - totalSupply();

        uint256 limit = flashMintLimit;

        return left > limit ? limit : left;
    }
}

File 2 of 12 : IERC3156FlashBorrower.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC3156FlashBorrower.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-3156 FlashBorrower, as defined in
 * https://eips.ethereum.org/EIPS/eip-3156[ERC-3156].
 */
interface IERC3156FlashBorrower {
    /**
     * @dev Receive a flash loan.
     * @param initiator The initiator of the loan.
     * @param token The loan currency.
     * @param amount The amount of tokens lent.
     * @param fee The additional amount of tokens to repay.
     * @param data Arbitrary data structure, intended to contain user-defined parameters.
     * @return The keccak256 hash of "ERC3156FlashBorrower.onFlashLoan"
     */
    function onFlashLoan(
        address initiator,
        address token,
        uint256 amount,
        uint256 fee,
        bytes calldata data
    ) external returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC3156FlashLender.sol)

pragma solidity ^0.8.20;

import {IERC3156FlashBorrower} from "./IERC3156FlashBorrower.sol";

/**
 * @dev Interface of the ERC-3156 FlashLender, as defined in
 * https://eips.ethereum.org/EIPS/eip-3156[ERC-3156].
 */
interface IERC3156FlashLender {
    /**
     * @dev The amount of currency available to be lended.
     * @param token The loan currency.
     * @return The amount of `token` that can be borrowed.
     */
    function maxFlashLoan(address token) external view returns (uint256);

    /**
     * @dev The fee to be charged for a given loan.
     * @param token The loan currency.
     * @param amount The amount of tokens lent.
     * @return The amount of `token` to be charged for the loan, on top of the returned principal.
     */
    function flashFee(address token, uint256 amount) external view returns (uint256);

    /**
     * @dev Initiate a flash loan.
     * @param receiver The receiver of the tokens in the loan, and the receiver of the callback.
     * @param token The loan currency.
     * @param amount The amount of tokens lent.
     * @param data Arbitrary data structure, intended to contain user-defined parameters.
     */
    function flashLoan(
        IERC3156FlashBorrower receiver,
        address token,
        uint256 amount,
        bytes calldata data
    ) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * Both values are immutable: they can only be set once during construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner`'s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Simple single owner authorization mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol)
///
/// @dev Note:
/// This implementation does NOT auto-initialize the owner to `msg.sender`.
/// You MUST call the `_initializeOwner` in the constructor / initializer.
///
/// While the ownable portion follows
/// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility,
/// the nomenclature for the 2-step ownership handover may be unique to this codebase.
abstract contract Ownable {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The caller is not authorized to call the function.
    error Unauthorized();

    /// @dev The `newOwner` cannot be the zero address.
    error NewOwnerIsZeroAddress();

    /// @dev The `pendingOwner` does not have a valid handover request.
    error NoHandoverRequest();

    /// @dev Cannot double-initialize.
    error AlreadyInitialized();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           EVENTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The ownership is transferred from `oldOwner` to `newOwner`.
    /// This event is intentionally kept the same as OpenZeppelin's Ownable to be
    /// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173),
    /// despite it not being as lightweight as a single argument event.
    event OwnershipTransferred(address indexed oldOwner, address indexed newOwner);

    /// @dev An ownership handover to `pendingOwner` has been requested.
    event OwnershipHandoverRequested(address indexed pendingOwner);

    /// @dev The ownership handover to `pendingOwner` has been canceled.
    event OwnershipHandoverCanceled(address indexed pendingOwner);

    /// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`.
    uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE =
        0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0;

    /// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`.
    uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE =
        0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d;

    /// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`.
    uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE =
        0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The owner slot is given by:
    /// `bytes32(~uint256(uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))))`.
    /// It is intentionally chosen to be a high value
    /// to avoid collision with lower slots.
    /// The choice of manual storage layout is to enable compatibility
    /// with both regular and upgradeable contracts.
    bytes32 internal constant _OWNER_SLOT =
        0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff74873927;

    /// The ownership handover slot of `newOwner` is given by:
    /// ```
    ///     mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED))
    ///     let handoverSlot := keccak256(0x00, 0x20)
    /// ```
    /// It stores the expiry timestamp of the two-step ownership handover.
    uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     INTERNAL FUNCTIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Override to return true to make `_initializeOwner` prevent double-initialization.
    function _guardInitializeOwner() internal pure virtual returns (bool guard) {}

    /// @dev Initializes the owner directly without authorization guard.
    /// This function must be called upon initialization,
    /// regardless of whether the contract is upgradeable or not.
    /// This is to enable generalization to both regular and upgradeable contracts,
    /// and to save gas in case the initial owner is not the caller.
    /// For performance reasons, this function will not check if there
    /// is an existing owner.
    function _initializeOwner(address newOwner) internal virtual {
        if (_guardInitializeOwner()) {
            /// @solidity memory-safe-assembly
            assembly {
                let ownerSlot := _OWNER_SLOT
                if sload(ownerSlot) {
                    mstore(0x00, 0x0dc149f0) // `AlreadyInitialized()`.
                    revert(0x1c, 0x04)
                }
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Store the new value.
                sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
            }
        } else {
            /// @solidity memory-safe-assembly
            assembly {
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Store the new value.
                sstore(_OWNER_SLOT, newOwner)
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
            }
        }
    }

    /// @dev Sets the owner directly without authorization guard.
    function _setOwner(address newOwner) internal virtual {
        if (_guardInitializeOwner()) {
            /// @solidity memory-safe-assembly
            assembly {
                let ownerSlot := _OWNER_SLOT
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
                // Store the new value.
                sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
            }
        } else {
            /// @solidity memory-safe-assembly
            assembly {
                let ownerSlot := _OWNER_SLOT
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
                // Store the new value.
                sstore(ownerSlot, newOwner)
            }
        }
    }

    /// @dev Throws if the sender is not the owner.
    function _checkOwner() internal view virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // If the caller is not the stored owner, revert.
            if iszero(eq(caller(), sload(_OWNER_SLOT))) {
                mstore(0x00, 0x82b42900) // `Unauthorized()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Returns how long a two-step ownership handover is valid for in seconds.
    /// Override to return a different value if needed.
    /// Made internal to conserve bytecode. Wrap it in a public function if needed.
    function _ownershipHandoverValidFor() internal view virtual returns (uint64) {
        return 48 * 3600;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  PUBLIC UPDATE FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Allows the owner to transfer the ownership to `newOwner`.
    function transferOwnership(address newOwner) public payable virtual onlyOwner {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(shl(96, newOwner)) {
                mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`.
                revert(0x1c, 0x04)
            }
        }
        _setOwner(newOwner);
    }

    /// @dev Allows the owner to renounce their ownership.
    function renounceOwnership() public payable virtual onlyOwner {
        _setOwner(address(0));
    }

    /// @dev Request a two-step ownership handover to the caller.
    /// The request will automatically expire in 48 hours (172800 seconds) by default.
    function requestOwnershipHandover() public payable virtual {
        unchecked {
            uint256 expires = block.timestamp + _ownershipHandoverValidFor();
            /// @solidity memory-safe-assembly
            assembly {
                // Compute and set the handover slot to `expires`.
                mstore(0x0c, _HANDOVER_SLOT_SEED)
                mstore(0x00, caller())
                sstore(keccak256(0x0c, 0x20), expires)
                // Emit the {OwnershipHandoverRequested} event.
                log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller())
            }
        }
    }

    /// @dev Cancels the two-step ownership handover to the caller, if any.
    function cancelOwnershipHandover() public payable virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute and set the handover slot to 0.
            mstore(0x0c, _HANDOVER_SLOT_SEED)
            mstore(0x00, caller())
            sstore(keccak256(0x0c, 0x20), 0)
            // Emit the {OwnershipHandoverCanceled} event.
            log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller())
        }
    }

    /// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`.
    /// Reverts if there is no existing ownership handover requested by `pendingOwner`.
    function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute and set the handover slot to 0.
            mstore(0x0c, _HANDOVER_SLOT_SEED)
            mstore(0x00, pendingOwner)
            let handoverSlot := keccak256(0x0c, 0x20)
            // If the handover does not exist, or has expired.
            if gt(timestamp(), sload(handoverSlot)) {
                mstore(0x00, 0x6f5e8818) // `NoHandoverRequest()`.
                revert(0x1c, 0x04)
            }
            // Set the handover slot to 0.
            sstore(handoverSlot, 0)
        }
        _setOwner(pendingOwner);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   PUBLIC READ FUNCTIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the owner of the contract.
    function owner() public view virtual returns (address result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := sload(_OWNER_SLOT)
        }
    }

    /// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`.
    function ownershipHandoverExpiresAt(address pendingOwner)
        public
        view
        virtual
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the handover slot.
            mstore(0x0c, _HANDOVER_SLOT_SEED)
            mstore(0x00, pendingOwner)
            // Load the handover slot.
            result := sload(keccak256(0x0c, 0x20))
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         MODIFIERS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Marks a function as only callable by the owner.
    modifier onlyOwner() virtual {
        _checkOwner();
        _;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

import {Ownable} from "./Ownable.sol";

/// @notice Simple single owner and multiroles authorization mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/OwnableRoles.sol)
///
/// @dev Note:
/// This implementation does NOT auto-initialize the owner to `msg.sender`.
/// You MUST call the `_initializeOwner` in the constructor / initializer.
///
/// While the ownable portion follows
/// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility,
/// the nomenclature for the 2-step ownership handover may be unique to this codebase.
abstract contract OwnableRoles is Ownable {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           EVENTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The `user`'s roles is updated to `roles`.
    /// Each bit of `roles` represents whether the role is set.
    event RolesUpdated(address indexed user, uint256 indexed roles);

    /// @dev `keccak256(bytes("RolesUpdated(address,uint256)"))`.
    uint256 private constant _ROLES_UPDATED_EVENT_SIGNATURE =
        0x715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe26;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The role slot of `user` is given by:
    /// ```
    ///     mstore(0x00, or(shl(96, user), _ROLE_SLOT_SEED))
    ///     let roleSlot := keccak256(0x00, 0x20)
    /// ```
    /// This automatically ignores the upper bits of the `user` in case
    /// they are not clean, as well as keep the `keccak256` under 32-bytes.
    ///
    /// Note: This is equivalent to `uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))`.
    uint256 private constant _ROLE_SLOT_SEED = 0x8b78c6d8;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     INTERNAL FUNCTIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Overwrite the roles directly without authorization guard.
    function _setRoles(address user, uint256 roles) internal virtual {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x0c, _ROLE_SLOT_SEED)
            mstore(0x00, user)
            // Store the new value.
            sstore(keccak256(0x0c, 0x20), roles)
            // Emit the {RolesUpdated} event.
            log3(0, 0, _ROLES_UPDATED_EVENT_SIGNATURE, shr(96, mload(0x0c)), roles)
        }
    }

    /// @dev Updates the roles directly without authorization guard.
    /// If `on` is true, each set bit of `roles` will be turned on,
    /// otherwise, each set bit of `roles` will be turned off.
    function _updateRoles(address user, uint256 roles, bool on) internal virtual {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x0c, _ROLE_SLOT_SEED)
            mstore(0x00, user)
            let roleSlot := keccak256(0x0c, 0x20)
            // Load the current value.
            let current := sload(roleSlot)
            // Compute the updated roles if `on` is true.
            let updated := or(current, roles)
            // Compute the updated roles if `on` is false.
            // Use `and` to compute the intersection of `current` and `roles`,
            // `xor` it with `current` to flip the bits in the intersection.
            if iszero(on) { updated := xor(current, and(current, roles)) }
            // Then, store the new value.
            sstore(roleSlot, updated)
            // Emit the {RolesUpdated} event.
            log3(0, 0, _ROLES_UPDATED_EVENT_SIGNATURE, shr(96, mload(0x0c)), updated)
        }
    }

    /// @dev Grants the roles directly without authorization guard.
    /// Each bit of `roles` represents the role to turn on.
    function _grantRoles(address user, uint256 roles) internal virtual {
        _updateRoles(user, roles, true);
    }

    /// @dev Removes the roles directly without authorization guard.
    /// Each bit of `roles` represents the role to turn off.
    function _removeRoles(address user, uint256 roles) internal virtual {
        _updateRoles(user, roles, false);
    }

    /// @dev Throws if the sender does not have any of the `roles`.
    function _checkRoles(uint256 roles) internal view virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the role slot.
            mstore(0x0c, _ROLE_SLOT_SEED)
            mstore(0x00, caller())
            // Load the stored value, and if the `and` intersection
            // of the value and `roles` is zero, revert.
            if iszero(and(sload(keccak256(0x0c, 0x20)), roles)) {
                mstore(0x00, 0x82b42900) // `Unauthorized()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Throws if the sender is not the owner,
    /// and does not have any of the `roles`.
    /// Checks for ownership first, then lazily checks for roles.
    function _checkOwnerOrRoles(uint256 roles) internal view virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // If the caller is not the stored owner.
            // Note: `_ROLE_SLOT_SEED` is equal to `_OWNER_SLOT_NOT`.
            if iszero(eq(caller(), sload(not(_ROLE_SLOT_SEED)))) {
                // Compute the role slot.
                mstore(0x0c, _ROLE_SLOT_SEED)
                mstore(0x00, caller())
                // Load the stored value, and if the `and` intersection
                // of the value and `roles` is zero, revert.
                if iszero(and(sload(keccak256(0x0c, 0x20)), roles)) {
                    mstore(0x00, 0x82b42900) // `Unauthorized()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Throws if the sender does not have any of the `roles`,
    /// and is not the owner.
    /// Checks for roles first, then lazily checks for ownership.
    function _checkRolesOrOwner(uint256 roles) internal view virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the role slot.
            mstore(0x0c, _ROLE_SLOT_SEED)
            mstore(0x00, caller())
            // Load the stored value, and if the `and` intersection
            // of the value and `roles` is zero, revert.
            if iszero(and(sload(keccak256(0x0c, 0x20)), roles)) {
                // If the caller is not the stored owner.
                // Note: `_ROLE_SLOT_SEED` is equal to `_OWNER_SLOT_NOT`.
                if iszero(eq(caller(), sload(not(_ROLE_SLOT_SEED)))) {
                    mstore(0x00, 0x82b42900) // `Unauthorized()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Convenience function to return a `roles` bitmap from an array of `ordinals`.
    /// This is meant for frontends like Etherscan, and is therefore not fully optimized.
    /// Not recommended to be called on-chain.
    /// Made internal to conserve bytecode. Wrap it in a public function if needed.
    function _rolesFromOrdinals(uint8[] memory ordinals) internal pure returns (uint256 roles) {
        /// @solidity memory-safe-assembly
        assembly {
            for { let i := shl(5, mload(ordinals)) } i { i := sub(i, 0x20) } {
                // We don't need to mask the values of `ordinals`, as Solidity
                // cleans dirty upper bits when storing variables into memory.
                roles := or(shl(mload(add(ordinals, i)), 1), roles)
            }
        }
    }

    /// @dev Convenience function to return an array of `ordinals` from the `roles` bitmap.
    /// This is meant for frontends like Etherscan, and is therefore not fully optimized.
    /// Not recommended to be called on-chain.
    /// Made internal to conserve bytecode. Wrap it in a public function if needed.
    function _ordinalsFromRoles(uint256 roles) internal pure returns (uint8[] memory ordinals) {
        /// @solidity memory-safe-assembly
        assembly {
            // Grab the pointer to the free memory.
            ordinals := mload(0x40)
            let ptr := add(ordinals, 0x20)
            let o := 0
            // The absence of lookup tables, De Bruijn, etc., here is intentional for
            // smaller bytecode, as this function is not meant to be called on-chain.
            for { let t := roles } 1 {} {
                mstore(ptr, o)
                // `shr` 5 is equivalent to multiplying by 0x20.
                // Push back into the ordinals array if the bit is set.
                ptr := add(ptr, shl(5, and(t, 1)))
                o := add(o, 1)
                t := shr(o, roles)
                if iszero(t) { break }
            }
            // Store the length of `ordinals`.
            mstore(ordinals, shr(5, sub(ptr, add(ordinals, 0x20))))
            // Allocate the memory.
            mstore(0x40, ptr)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  PUBLIC UPDATE FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Allows the owner to grant `user` `roles`.
    /// If the `user` already has a role, then it will be an no-op for the role.
    function grantRoles(address user, uint256 roles) public payable virtual onlyOwner {
        _grantRoles(user, roles);
    }

    /// @dev Allows the owner to remove `user` `roles`.
    /// If the `user` does not have a role, then it will be an no-op for the role.
    function revokeRoles(address user, uint256 roles) public payable virtual onlyOwner {
        _removeRoles(user, roles);
    }

    /// @dev Allow the caller to remove their own roles.
    /// If the caller does not have a role, then it will be an no-op for the role.
    function renounceRoles(uint256 roles) public payable virtual {
        _removeRoles(msg.sender, roles);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   PUBLIC READ FUNCTIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the roles of `user`.
    function rolesOf(address user) public view virtual returns (uint256 roles) {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the role slot.
            mstore(0x0c, _ROLE_SLOT_SEED)
            mstore(0x00, user)
            // Load the stored value.
            roles := sload(keccak256(0x0c, 0x20))
        }
    }

    /// @dev Returns whether `user` has any of `roles`.
    function hasAnyRole(address user, uint256 roles) public view virtual returns (bool) {
        return rolesOf(user) & roles != 0;
    }

    /// @dev Returns whether `user` has all of `roles`.
    function hasAllRoles(address user, uint256 roles) public view virtual returns (bool) {
        return rolesOf(user) & roles == roles;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         MODIFIERS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Marks a function as only callable by an account with `roles`.
    modifier onlyRoles(uint256 roles) virtual {
        _checkRoles(roles);
        _;
    }

    /// @dev Marks a function as only callable by the owner or by an account
    /// with `roles`. Checks for ownership first, then lazily checks for roles.
    modifier onlyOwnerOrRoles(uint256 roles) virtual {
        _checkOwnerOrRoles(roles);
        _;
    }

    /// @dev Marks a function as only callable by an account with `roles`
    /// or the owner. Checks for roles first, then lazily checks for ownership.
    modifier onlyRolesOrOwner(uint256 roles) virtual {
        _checkRolesOrOwner(roles);
        _;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       ROLE CONSTANTS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // IYKYK

    uint256 internal constant _ROLE_0 = 1 << 0;
    uint256 internal constant _ROLE_1 = 1 << 1;
    uint256 internal constant _ROLE_2 = 1 << 2;
    uint256 internal constant _ROLE_3 = 1 << 3;
    uint256 internal constant _ROLE_4 = 1 << 4;
    uint256 internal constant _ROLE_5 = 1 << 5;
    uint256 internal constant _ROLE_6 = 1 << 6;
    uint256 internal constant _ROLE_7 = 1 << 7;
    uint256 internal constant _ROLE_8 = 1 << 8;
    uint256 internal constant _ROLE_9 = 1 << 9;
    uint256 internal constant _ROLE_10 = 1 << 10;
    uint256 internal constant _ROLE_11 = 1 << 11;
    uint256 internal constant _ROLE_12 = 1 << 12;
    uint256 internal constant _ROLE_13 = 1 << 13;
    uint256 internal constant _ROLE_14 = 1 << 14;
    uint256 internal constant _ROLE_15 = 1 << 15;
    uint256 internal constant _ROLE_16 = 1 << 16;
    uint256 internal constant _ROLE_17 = 1 << 17;
    uint256 internal constant _ROLE_18 = 1 << 18;
    uint256 internal constant _ROLE_19 = 1 << 19;
    uint256 internal constant _ROLE_20 = 1 << 20;
    uint256 internal constant _ROLE_21 = 1 << 21;
    uint256 internal constant _ROLE_22 = 1 << 22;
    uint256 internal constant _ROLE_23 = 1 << 23;
    uint256 internal constant _ROLE_24 = 1 << 24;
    uint256 internal constant _ROLE_25 = 1 << 25;
    uint256 internal constant _ROLE_26 = 1 << 26;
    uint256 internal constant _ROLE_27 = 1 << 27;
    uint256 internal constant _ROLE_28 = 1 << 28;
    uint256 internal constant _ROLE_29 = 1 << 29;
    uint256 internal constant _ROLE_30 = 1 << 30;
    uint256 internal constant _ROLE_31 = 1 << 31;
    uint256 internal constant _ROLE_32 = 1 << 32;
    uint256 internal constant _ROLE_33 = 1 << 33;
    uint256 internal constant _ROLE_34 = 1 << 34;
    uint256 internal constant _ROLE_35 = 1 << 35;
    uint256 internal constant _ROLE_36 = 1 << 36;
    uint256 internal constant _ROLE_37 = 1 << 37;
    uint256 internal constant _ROLE_38 = 1 << 38;
    uint256 internal constant _ROLE_39 = 1 << 39;
    uint256 internal constant _ROLE_40 = 1 << 40;
    uint256 internal constant _ROLE_41 = 1 << 41;
    uint256 internal constant _ROLE_42 = 1 << 42;
    uint256 internal constant _ROLE_43 = 1 << 43;
    uint256 internal constant _ROLE_44 = 1 << 44;
    uint256 internal constant _ROLE_45 = 1 << 45;
    uint256 internal constant _ROLE_46 = 1 << 46;
    uint256 internal constant _ROLE_47 = 1 << 47;
    uint256 internal constant _ROLE_48 = 1 << 48;
    uint256 internal constant _ROLE_49 = 1 << 49;
    uint256 internal constant _ROLE_50 = 1 << 50;
    uint256 internal constant _ROLE_51 = 1 << 51;
    uint256 internal constant _ROLE_52 = 1 << 52;
    uint256 internal constant _ROLE_53 = 1 << 53;
    uint256 internal constant _ROLE_54 = 1 << 54;
    uint256 internal constant _ROLE_55 = 1 << 55;
    uint256 internal constant _ROLE_56 = 1 << 56;
    uint256 internal constant _ROLE_57 = 1 << 57;
    uint256 internal constant _ROLE_58 = 1 << 58;
    uint256 internal constant _ROLE_59 = 1 << 59;
    uint256 internal constant _ROLE_60 = 1 << 60;
    uint256 internal constant _ROLE_61 = 1 << 61;
    uint256 internal constant _ROLE_62 = 1 << 62;
    uint256 internal constant _ROLE_63 = 1 << 63;
    uint256 internal constant _ROLE_64 = 1 << 64;
    uint256 internal constant _ROLE_65 = 1 << 65;
    uint256 internal constant _ROLE_66 = 1 << 66;
    uint256 internal constant _ROLE_67 = 1 << 67;
    uint256 internal constant _ROLE_68 = 1 << 68;
    uint256 internal constant _ROLE_69 = 1 << 69;
    uint256 internal constant _ROLE_70 = 1 << 70;
    uint256 internal constant _ROLE_71 = 1 << 71;
    uint256 internal constant _ROLE_72 = 1 << 72;
    uint256 internal constant _ROLE_73 = 1 << 73;
    uint256 internal constant _ROLE_74 = 1 << 74;
    uint256 internal constant _ROLE_75 = 1 << 75;
    uint256 internal constant _ROLE_76 = 1 << 76;
    uint256 internal constant _ROLE_77 = 1 << 77;
    uint256 internal constant _ROLE_78 = 1 << 78;
    uint256 internal constant _ROLE_79 = 1 << 79;
    uint256 internal constant _ROLE_80 = 1 << 80;
    uint256 internal constant _ROLE_81 = 1 << 81;
    uint256 internal constant _ROLE_82 = 1 << 82;
    uint256 internal constant _ROLE_83 = 1 << 83;
    uint256 internal constant _ROLE_84 = 1 << 84;
    uint256 internal constant _ROLE_85 = 1 << 85;
    uint256 internal constant _ROLE_86 = 1 << 86;
    uint256 internal constant _ROLE_87 = 1 << 87;
    uint256 internal constant _ROLE_88 = 1 << 88;
    uint256 internal constant _ROLE_89 = 1 << 89;
    uint256 internal constant _ROLE_90 = 1 << 90;
    uint256 internal constant _ROLE_91 = 1 << 91;
    uint256 internal constant _ROLE_92 = 1 << 92;
    uint256 internal constant _ROLE_93 = 1 << 93;
    uint256 internal constant _ROLE_94 = 1 << 94;
    uint256 internal constant _ROLE_95 = 1 << 95;
    uint256 internal constant _ROLE_96 = 1 << 96;
    uint256 internal constant _ROLE_97 = 1 << 97;
    uint256 internal constant _ROLE_98 = 1 << 98;
    uint256 internal constant _ROLE_99 = 1 << 99;
    uint256 internal constant _ROLE_100 = 1 << 100;
    uint256 internal constant _ROLE_101 = 1 << 101;
    uint256 internal constant _ROLE_102 = 1 << 102;
    uint256 internal constant _ROLE_103 = 1 << 103;
    uint256 internal constant _ROLE_104 = 1 << 104;
    uint256 internal constant _ROLE_105 = 1 << 105;
    uint256 internal constant _ROLE_106 = 1 << 106;
    uint256 internal constant _ROLE_107 = 1 << 107;
    uint256 internal constant _ROLE_108 = 1 << 108;
    uint256 internal constant _ROLE_109 = 1 << 109;
    uint256 internal constant _ROLE_110 = 1 << 110;
    uint256 internal constant _ROLE_111 = 1 << 111;
    uint256 internal constant _ROLE_112 = 1 << 112;
    uint256 internal constant _ROLE_113 = 1 << 113;
    uint256 internal constant _ROLE_114 = 1 << 114;
    uint256 internal constant _ROLE_115 = 1 << 115;
    uint256 internal constant _ROLE_116 = 1 << 116;
    uint256 internal constant _ROLE_117 = 1 << 117;
    uint256 internal constant _ROLE_118 = 1 << 118;
    uint256 internal constant _ROLE_119 = 1 << 119;
    uint256 internal constant _ROLE_120 = 1 << 120;
    uint256 internal constant _ROLE_121 = 1 << 121;
    uint256 internal constant _ROLE_122 = 1 << 122;
    uint256 internal constant _ROLE_123 = 1 << 123;
    uint256 internal constant _ROLE_124 = 1 << 124;
    uint256 internal constant _ROLE_125 = 1 << 125;
    uint256 internal constant _ROLE_126 = 1 << 126;
    uint256 internal constant _ROLE_127 = 1 << 127;
    uint256 internal constant _ROLE_128 = 1 << 128;
    uint256 internal constant _ROLE_129 = 1 << 129;
    uint256 internal constant _ROLE_130 = 1 << 130;
    uint256 internal constant _ROLE_131 = 1 << 131;
    uint256 internal constant _ROLE_132 = 1 << 132;
    uint256 internal constant _ROLE_133 = 1 << 133;
    uint256 internal constant _ROLE_134 = 1 << 134;
    uint256 internal constant _ROLE_135 = 1 << 135;
    uint256 internal constant _ROLE_136 = 1 << 136;
    uint256 internal constant _ROLE_137 = 1 << 137;
    uint256 internal constant _ROLE_138 = 1 << 138;
    uint256 internal constant _ROLE_139 = 1 << 139;
    uint256 internal constant _ROLE_140 = 1 << 140;
    uint256 internal constant _ROLE_141 = 1 << 141;
    uint256 internal constant _ROLE_142 = 1 << 142;
    uint256 internal constant _ROLE_143 = 1 << 143;
    uint256 internal constant _ROLE_144 = 1 << 144;
    uint256 internal constant _ROLE_145 = 1 << 145;
    uint256 internal constant _ROLE_146 = 1 << 146;
    uint256 internal constant _ROLE_147 = 1 << 147;
    uint256 internal constant _ROLE_148 = 1 << 148;
    uint256 internal constant _ROLE_149 = 1 << 149;
    uint256 internal constant _ROLE_150 = 1 << 150;
    uint256 internal constant _ROLE_151 = 1 << 151;
    uint256 internal constant _ROLE_152 = 1 << 152;
    uint256 internal constant _ROLE_153 = 1 << 153;
    uint256 internal constant _ROLE_154 = 1 << 154;
    uint256 internal constant _ROLE_155 = 1 << 155;
    uint256 internal constant _ROLE_156 = 1 << 156;
    uint256 internal constant _ROLE_157 = 1 << 157;
    uint256 internal constant _ROLE_158 = 1 << 158;
    uint256 internal constant _ROLE_159 = 1 << 159;
    uint256 internal constant _ROLE_160 = 1 << 160;
    uint256 internal constant _ROLE_161 = 1 << 161;
    uint256 internal constant _ROLE_162 = 1 << 162;
    uint256 internal constant _ROLE_163 = 1 << 163;
    uint256 internal constant _ROLE_164 = 1 << 164;
    uint256 internal constant _ROLE_165 = 1 << 165;
    uint256 internal constant _ROLE_166 = 1 << 166;
    uint256 internal constant _ROLE_167 = 1 << 167;
    uint256 internal constant _ROLE_168 = 1 << 168;
    uint256 internal constant _ROLE_169 = 1 << 169;
    uint256 internal constant _ROLE_170 = 1 << 170;
    uint256 internal constant _ROLE_171 = 1 << 171;
    uint256 internal constant _ROLE_172 = 1 << 172;
    uint256 internal constant _ROLE_173 = 1 << 173;
    uint256 internal constant _ROLE_174 = 1 << 174;
    uint256 internal constant _ROLE_175 = 1 << 175;
    uint256 internal constant _ROLE_176 = 1 << 176;
    uint256 internal constant _ROLE_177 = 1 << 177;
    uint256 internal constant _ROLE_178 = 1 << 178;
    uint256 internal constant _ROLE_179 = 1 << 179;
    uint256 internal constant _ROLE_180 = 1 << 180;
    uint256 internal constant _ROLE_181 = 1 << 181;
    uint256 internal constant _ROLE_182 = 1 << 182;
    uint256 internal constant _ROLE_183 = 1 << 183;
    uint256 internal constant _ROLE_184 = 1 << 184;
    uint256 internal constant _ROLE_185 = 1 << 185;
    uint256 internal constant _ROLE_186 = 1 << 186;
    uint256 internal constant _ROLE_187 = 1 << 187;
    uint256 internal constant _ROLE_188 = 1 << 188;
    uint256 internal constant _ROLE_189 = 1 << 189;
    uint256 internal constant _ROLE_190 = 1 << 190;
    uint256 internal constant _ROLE_191 = 1 << 191;
    uint256 internal constant _ROLE_192 = 1 << 192;
    uint256 internal constant _ROLE_193 = 1 << 193;
    uint256 internal constant _ROLE_194 = 1 << 194;
    uint256 internal constant _ROLE_195 = 1 << 195;
    uint256 internal constant _ROLE_196 = 1 << 196;
    uint256 internal constant _ROLE_197 = 1 << 197;
    uint256 internal constant _ROLE_198 = 1 << 198;
    uint256 internal constant _ROLE_199 = 1 << 199;
    uint256 internal constant _ROLE_200 = 1 << 200;
    uint256 internal constant _ROLE_201 = 1 << 201;
    uint256 internal constant _ROLE_202 = 1 << 202;
    uint256 internal constant _ROLE_203 = 1 << 203;
    uint256 internal constant _ROLE_204 = 1 << 204;
    uint256 internal constant _ROLE_205 = 1 << 205;
    uint256 internal constant _ROLE_206 = 1 << 206;
    uint256 internal constant _ROLE_207 = 1 << 207;
    uint256 internal constant _ROLE_208 = 1 << 208;
    uint256 internal constant _ROLE_209 = 1 << 209;
    uint256 internal constant _ROLE_210 = 1 << 210;
    uint256 internal constant _ROLE_211 = 1 << 211;
    uint256 internal constant _ROLE_212 = 1 << 212;
    uint256 internal constant _ROLE_213 = 1 << 213;
    uint256 internal constant _ROLE_214 = 1 << 214;
    uint256 internal constant _ROLE_215 = 1 << 215;
    uint256 internal constant _ROLE_216 = 1 << 216;
    uint256 internal constant _ROLE_217 = 1 << 217;
    uint256 internal constant _ROLE_218 = 1 << 218;
    uint256 internal constant _ROLE_219 = 1 << 219;
    uint256 internal constant _ROLE_220 = 1 << 220;
    uint256 internal constant _ROLE_221 = 1 << 221;
    uint256 internal constant _ROLE_222 = 1 << 222;
    uint256 internal constant _ROLE_223 = 1 << 223;
    uint256 internal constant _ROLE_224 = 1 << 224;
    uint256 internal constant _ROLE_225 = 1 << 225;
    uint256 internal constant _ROLE_226 = 1 << 226;
    uint256 internal constant _ROLE_227 = 1 << 227;
    uint256 internal constant _ROLE_228 = 1 << 228;
    uint256 internal constant _ROLE_229 = 1 << 229;
    uint256 internal constant _ROLE_230 = 1 << 230;
    uint256 internal constant _ROLE_231 = 1 << 231;
    uint256 internal constant _ROLE_232 = 1 << 232;
    uint256 internal constant _ROLE_233 = 1 << 233;
    uint256 internal constant _ROLE_234 = 1 << 234;
    uint256 internal constant _ROLE_235 = 1 << 235;
    uint256 internal constant _ROLE_236 = 1 << 236;
    uint256 internal constant _ROLE_237 = 1 << 237;
    uint256 internal constant _ROLE_238 = 1 << 238;
    uint256 internal constant _ROLE_239 = 1 << 239;
    uint256 internal constant _ROLE_240 = 1 << 240;
    uint256 internal constant _ROLE_241 = 1 << 241;
    uint256 internal constant _ROLE_242 = 1 << 242;
    uint256 internal constant _ROLE_243 = 1 << 243;
    uint256 internal constant _ROLE_244 = 1 << 244;
    uint256 internal constant _ROLE_245 = 1 << 245;
    uint256 internal constant _ROLE_246 = 1 << 246;
    uint256 internal constant _ROLE_247 = 1 << 247;
    uint256 internal constant _ROLE_248 = 1 << 248;
    uint256 internal constant _ROLE_249 = 1 << 249;
    uint256 internal constant _ROLE_250 = 1 << 250;
    uint256 internal constant _ROLE_251 = 1 << 251;
    uint256 internal constant _ROLE_252 = 1 << 252;
    uint256 internal constant _ROLE_253 = 1 << 253;
    uint256 internal constant _ROLE_254 = 1 << 254;
    uint256 internal constant _ROLE_255 = 1 << 255;
}

File 11 of 12 : FixedPointMathLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error ExpOverflow();

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error FactorialOverflow();

    /// @dev The operation failed, due to an overflow.
    error RPowOverflow();

    /// @dev The mantissa is too big to fit.
    error MantissaOverflow();

    /// @dev The operation failed, due to an multiplication overflow.
    error MulWadFailed();

    /// @dev The operation failed, due to an multiplication overflow.
    error SMulWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error DivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error SDivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error MulDivFailed();

    /// @dev The division failed, as the denominator is zero.
    error DivFailed();

    /// @dev The full precision multiply-divide operation failed, either due
    /// to the result being larger than 256 bits, or a division by a zero.
    error FullMulDivFailed();

    /// @dev The output is undefined, as the input is less-than-or-equal to zero.
    error LnWadUndefined();

    /// @dev The input outside the acceptable domain.
    error OutOfDomain();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The scalar of ETH and most ERC20s.
    uint256 internal constant WAD = 1e18;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*              SIMPLIFIED FIXED POINT OPERATIONS             */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if gt(x, div(not(0), y)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
            if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
                mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up.
    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if iszero(eq(div(z, y), x)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := add(iszero(iszero(mod(z, WAD))), div(z, WAD))
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
    function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, WAD)
            // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
            if iszero(mul(y, eq(sdiv(z, WAD), x))) {
                mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up.
    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
    function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `x` to the power of `y`.
    /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
    /// Note: This function is an approximation.
    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Using `ln(x)` means `x` must be greater than 0.
        return expWad((lnWad(x) * y) / int256(WAD));
    }

    /// @dev Returns `exp(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is less than 0.5 we return zero.
            // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
            if (x <= -41446531673892822313) return r;

            /// @solidity memory-safe-assembly
            assembly {
                // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
                // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
                if iszero(slt(x, 135305999368893231589)) {
                    mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                    revert(0x1c, 0x04)
                }
            }

            // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5 ** 18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // `k` is in the range `[-61, 195]`.

            // Evaluate using a (6, 7)-term rational approximation.
            // `p` is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            /// @solidity memory-safe-assembly
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already `2**96` too large.
                r := sdiv(p, q)
            }

            // r should be in the range `(0.09, 0.25) * 2**96`.

            // We now need to multiply r by:
            // - The scale factor `s ≈ 6.031367120`.
            // - The `2**k` factor from the range reduction.
            // - The `1e18 / 2**96` factor for base conversion.
            // We do this all at once, with an intermediate result in `2**213`
            // basis, so the final right shift is always by a positive amount.
            r = int256(
                (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
            );
        }
    }

    /// @dev Returns `ln(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function lnWad(int256 x) internal pure returns (int256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
            // We do this by multiplying by `2**96 / 10**18`. But since
            // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
            // and add `ln(2**96 / 10**18)` at the end.

            // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // We place the check here for more optimal stack operations.
            if iszero(sgt(x, 0)) {
                mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                revert(0x1c, 0x04)
            }
            // forgefmt: disable-next-item
            r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            x := shr(159, shl(r, x))

            // Evaluate using a (8, 8)-term rational approximation.
            // `p` is made monic, we will multiply by a scale factor later.
            // forgefmt: disable-next-item
            let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
                sar(96, mul(add(43456485725739037958740375743393,
                sar(96, mul(add(24828157081833163892658089445524,
                sar(96, mul(add(3273285459638523848632254066296,
                    x), x))), x))), x)), 11111509109440967052023855526967)
            p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
            p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
            p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.

            // `q` is monic by convention.
            let q := add(5573035233440673466300451813936, x)
            q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
            q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
            q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
            q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
            q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
            q := add(909429971244387300277376558375, sar(96, mul(x, q)))

            // `p / q` is in the range `(0, 0.125) * 2**96`.

            // Finalization, we need to:
            // - Multiply by the scale factor `s = 5.549…`.
            // - Add `ln(2**96 / 10**18)`.
            // - Add `k * ln(2)`.
            // - Multiply by `10**18 / 2**96 = 5**18 >> 78`.

            // The q polynomial is known not to have zeros in the domain.
            // No scaling required because p is already `2**96` too large.
            p := sdiv(p, q)
            // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
            p := mul(1677202110996718588342820967067443963516166, p)
            // Add `ln(2) * k * 5**18 * 2**192`.
            // forgefmt: disable-next-item
            p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
            // Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
            p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
            // Base conversion: mul `2**18 / 2**192`.
            r := sar(174, p)
        }
    }

    /// @dev Returns `W_0(x)`, denominated in `WAD`.
    /// See: https://en.wikipedia.org/wiki/Lambert_W_function
    /// a.k.a. Product log function. This is an approximation of the principal branch.
    /// Note: This function is an approximation. Monotonically increasing.
    function lambertW0Wad(int256 x) internal pure returns (int256 w) {
        // forgefmt: disable-next-item
        unchecked {
            if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
            (int256 wad, int256 p) = (int256(WAD), x);
            uint256 c; // Whether we need to avoid catastrophic cancellation.
            uint256 i = 4; // Number of iterations.
            if (w <= 0x1ffffffffffff) {
                if (-0x4000000000000 <= w) {
                    i = 1; // Inputs near zero only take one step to converge.
                } else if (w <= -0x3ffffffffffffff) {
                    i = 32; // Inputs near `-1/e` take very long to converge.
                }
            } else if (uint256(w >> 63) == uint256(0)) {
                /// @solidity memory-safe-assembly
                assembly {
                    // Inline log2 for more performance, since the range is small.
                    let v := shr(49, w)
                    let l := shl(3, lt(0xff, v))
                    l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
                        0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
                    w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
                    c := gt(l, 60)
                    i := add(2, add(gt(l, 53), c))
                }
            } else {
                int256 ll = lnWad(w = lnWad(w));
                /// @solidity memory-safe-assembly
                assembly {
                    // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
                    w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
                    i := add(3, iszero(shr(68, x)))
                    c := iszero(shr(143, x))
                }
                if (c == uint256(0)) {
                    do { // If `x` is big, use Newton's so that intermediate values won't overflow.
                        int256 e = expWad(w);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let t := mul(w, div(e, wad))
                            w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
                        }
                        if (p <= w) break;
                        p = w;
                    } while (--i != uint256(0));
                    /// @solidity memory-safe-assembly
                    assembly {
                        w := sub(w, sgt(w, 2))
                    }
                    return w;
                }
            }
            do { // Otherwise, use Halley's for faster convergence.
                int256 e = expWad(w);
                /// @solidity memory-safe-assembly
                assembly {
                    let t := add(w, wad)
                    let s := sub(mul(w, e), mul(x, wad))
                    w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
                }
                if (p <= w) break;
                p = w;
            } while (--i != c);
            /// @solidity memory-safe-assembly
            assembly {
                w := sub(w, sgt(w, 2))
            }
            // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
            // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
            if (c == uint256(0)) return w;
            int256 t = w | 1;
            /// @solidity memory-safe-assembly
            assembly {
                x := sdiv(mul(x, wad), t)
            }
            x = (t * (wad + lnWad(x)));
            /// @solidity memory-safe-assembly
            assembly {
                w := sdiv(x, add(wad, t))
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  GENERAL NUMBER UTILITIES                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `a * b == x * y`, with full precision.
    function fullMulEq(uint256 a, uint256 b, uint256 x, uint256 y)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            result := and(eq(mul(a, b), mul(x, y)), eq(mulmod(x, y, not(0)), mulmod(a, b, not(0))))
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
    function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // 512-bit multiply `[p1 p0] = x * y`.
            // Compute the product mod `2**256` and mod `2**256 - 1`
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that `product = p1 * 2**256 + p0`.

            // Temporarily use `z` as `p0` to save gas.
            z := mul(x, y) // Lower 256 bits of `x * y`.
            for {} 1 {} {
                // If overflows.
                if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.

                    /*------------------- 512 by 256 division --------------------*/

                    // Make division exact by subtracting the remainder from `[p1 p0]`.
                    let r := mulmod(x, y, d) // Compute remainder using mulmod.
                    let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
                    // Make sure `z` is less than `2**256`. Also prevents `d == 0`.
                    // Placing the check here seems to give more optimal stack operations.
                    if iszero(gt(d, p1)) {
                        mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                        revert(0x1c, 0x04)
                    }
                    d := div(d, t) // Divide `d` by `t`, which is a power of two.
                    // Invert `d mod 2**256`
                    // Now that `d` is an odd number, it has an inverse
                    // modulo `2**256` such that `d * inv = 1 mod 2**256`.
                    // Compute the inverse by starting with a seed that is correct
                    // correct for four bits. That is, `d * inv = 1 mod 2**4`.
                    let inv := xor(2, mul(3, d))
                    // Now use Newton-Raphson iteration to improve the precision.
                    // Thanks to Hensel's lifting lemma, this also works in modular
                    // arithmetic, doubling the correct bits in each step.
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
                    z :=
                        mul(
                            // Divide [p1 p0] by the factors of two.
                            // Shift in bits from `p1` into `p0`. For this we need
                            // to flip `t` such that it is `2**256 / t`.
                            or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                            mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
                        )
                    break
                }
                z := div(z, d)
                break
            }
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
    /// Performs the full 512 bit calculation regardless.
    function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            let mm := mulmod(x, y, not(0))
            let p1 := sub(mm, add(z, lt(mm, z)))
            let t := and(d, sub(0, d))
            let r := mulmod(x, y, d)
            d := div(d, t)
            let inv := xor(2, mul(3, d))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            z :=
                mul(
                    or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                    mul(sub(2, mul(d, inv)), inv)
                )
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Uniswap-v3-core under MIT license:
    /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
    function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        z = fullMulDiv(x, y, d);
        /// @solidity memory-safe-assembly
        assembly {
            if mulmod(x, y, d) {
                z := add(z, 1)
                if iszero(z) {
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Calculates `floor(x * y / 2 ** n)` with full precision.
    /// Throws if result overflows a uint256.
    /// Credit to Philogy under MIT license:
    /// https://github.com/SorellaLabs/angstrom/blob/main/contracts/src/libraries/X128MathLib.sol
    function fullMulDivN(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Temporarily use `z` as `p0` to save gas.
            z := mul(x, y) // Lower 256 bits of `x * y`. We'll call this `z`.
            for {} 1 {} {
                if iszero(or(iszero(x), eq(div(z, x), y))) {
                    let k := and(n, 0xff) // `n`, cleaned.
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.
                    //         |      p1     |      z     |
                    // Before: | p1_0 ¦ p1_1 | z_0  ¦ z_1 |
                    // Final:  |   0  ¦ p1_0 | p1_1 ¦ z_0 |
                    // Check that final `z` doesn't overflow by checking that p1_0 = 0.
                    if iszero(shr(k, p1)) {
                        z := add(shl(sub(256, k), p1), shr(k, z))
                        break
                    }
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
                z := shr(and(n, 0xff), z)
                break
            }
        }
    }

    /// @dev Returns `floor(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(z, d)
        }
    }

    /// @dev Returns `ceil(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(z, d))), div(z, d))
        }
    }

    /// @dev Returns `x`, the modular multiplicative inverse of `a`, such that `(a * x) % n == 1`.
    function invMod(uint256 a, uint256 n) internal pure returns (uint256 x) {
        /// @solidity memory-safe-assembly
        assembly {
            let g := n
            let r := mod(a, n)
            for { let y := 1 } 1 {} {
                let q := div(g, r)
                let t := g
                g := r
                r := sub(t, mul(r, q))
                let u := x
                x := y
                y := sub(u, mul(y, q))
                if iszero(r) { break }
            }
            x := mul(eq(g, 1), add(x, mul(slt(x, 0), n)))
        }
    }

    /// @dev Returns `ceil(x / d)`.
    /// Reverts if `d` is zero.
    function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(d) {
                mstore(0x00, 0x65244e4e) // `DivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(x, d))), div(x, d))
        }
    }

    /// @dev Returns `max(0, x - y)`. Alias for `saturatingSub`.
    function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `max(0, x - y)`.
    function saturatingSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `min(2 ** 256 - 1, x + y)`.
    function saturatingAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(sub(0, lt(add(x, y), x)), add(x, y))
        }
    }

    /// @dev Returns `min(2 ** 256 - 1, x * y)`.
    function saturatingMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(sub(or(iszero(x), eq(div(mul(x, y), x), y)), 1), mul(x, y))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, address x, address y) internal pure returns (address z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `x != 0 ? x : y`, without branching.
    function coalesce(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(x, mul(y, iszero(x)))
        }
    }

    /// @dev Returns `x != bytes32(0) ? x : y`, without branching.
    function coalesce(bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(x, mul(y, iszero(x)))
        }
    }

    /// @dev Returns `x != address(0) ? x : y`, without branching.
    function coalesce(address x, address y) internal pure returns (address z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(x, mul(y, iszero(shl(96, x))))
        }
    }

    /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
    /// Reverts if the computation overflows.
    function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
            if x {
                z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
                let half := shr(1, b) // Divide `b` by 2.
                // Divide `y` by 2 every iteration.
                for { y := shr(1, y) } y { y := shr(1, y) } {
                    let xx := mul(x, x) // Store x squared.
                    let xxRound := add(xx, half) // Round to the nearest number.
                    // Revert if `xx + half` overflowed, or if `x ** 2` overflows.
                    if or(lt(xxRound, xx), shr(128, x)) {
                        mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                        revert(0x1c, 0x04)
                    }
                    x := div(xxRound, b) // Set `x` to scaled `xxRound`.
                    // If `y` is odd:
                    if and(y, 1) {
                        let zx := mul(z, x) // Compute `z * x`.
                        let zxRound := add(zx, half) // Round to the nearest number.
                        // If `z * x` overflowed or `zx + half` overflowed:
                        if or(xor(div(zx, x), z), lt(zxRound, zx)) {
                            // Revert if `x` is non-zero.
                            if x {
                                mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                revert(0x1c, 0x04)
                            }
                        }
                        z := div(zxRound, b) // Return properly scaled `zxRound`.
                    }
                }
            }
        }
    }

    /// @dev Returns the square root of `x`, rounded down.
    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
            // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffffff, shr(r, x))))
            z := shl(shr(1, r), z)

            // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
            // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
            // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
            // That's not possible if `x < 256` but we can just verify those cases exhaustively.

            // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
            // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
            // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.

            // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
            // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
            // with largest error when `s = 1` and when `s = 256` or `1/256`.

            // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
            // Then we can estimate `sqrt(y)` using
            // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.

            // There is no overflow risk here since `y < 2**136` after the first branch above.
            z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If `x+1` is a perfect square, the Babylonian method cycles between
            // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            z := sub(z, lt(div(x, z), z))
        }
    }

    /// @dev Returns the cube root of `x`, rounded down.
    /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
    /// https://github.com/pcaversaccio/snekmate/blob/main/src/snekmate/utils/math.vy
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // Makeshift lookup table to nudge the approximate log2 result.
            z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))
            // Newton-Raphson's.
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            // Round down.
            z := sub(z, lt(div(x, mul(z, z)), z))
        }
    }

    /// @dev Returns the square root of `x`, denominated in `WAD`, rounded down.
    function sqrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18);
            z = (1 + sqrt(x)) * 10 ** 9;
            z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1;
        }
        /// @solidity memory-safe-assembly
        assembly {
            z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1))) // Round down.
        }
    }

    /// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down.
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36);
            z = (1 + cbrt(x)) * 10 ** 12;
            z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3;
        }
        /// @solidity memory-safe-assembly
        assembly {
            let p := x
            for {} 1 {} {
                if iszero(shr(229, p)) {
                    if iszero(shr(199, p)) {
                        p := mul(p, 100000000000000000) // 10 ** 17.
                        break
                    }
                    p := mul(p, 100000000) // 10 ** 8.
                    break
                }
                if iszero(shr(249, p)) { p := mul(p, 100) }
                break
            }
            let t := mulmod(mul(z, z), z, p)
            z := sub(z, gt(lt(t, shr(1, p)), iszero(t))) // Round down.
        }
    }

    /// @dev Returns the factorial of `x`.
    function factorial(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := 1
            if iszero(lt(x, 58)) {
                mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
                revert(0x1c, 0x04)
            }
            for {} x { x := sub(x, 1) } { z := mul(z, x) }
        }
    }

    /// @dev Returns the log2 of `x`.
    /// Equivalent to computing the index of the most significant bit (MSB) of `x`.
    /// Returns 0 if `x` is zero.
    function log2(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0x0706060506020504060203020504030106050205030304010505030400000000))
        }
    }

    /// @dev Returns the log2 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log2Up(uint256 x) internal pure returns (uint256 r) {
        r = log2(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(r, 1), x))
        }
    }

    /// @dev Returns the log10 of `x`.
    /// Returns 0 if `x` is zero.
    function log10(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(lt(x, 100000000000000000000000000000000000000)) {
                x := div(x, 100000000000000000000000000000000000000)
                r := 38
            }
            if iszero(lt(x, 100000000000000000000)) {
                x := div(x, 100000000000000000000)
                r := add(r, 20)
            }
            if iszero(lt(x, 10000000000)) {
                x := div(x, 10000000000)
                r := add(r, 10)
            }
            if iszero(lt(x, 100000)) {
                x := div(x, 100000)
                r := add(r, 5)
            }
            r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
        }
    }

    /// @dev Returns the log10 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log10Up(uint256 x) internal pure returns (uint256 r) {
        r = log10(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(exp(10, r), x))
        }
    }

    /// @dev Returns the log256 of `x`.
    /// Returns 0 if `x` is zero.
    function log256(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(shr(3, r), lt(0xff, shr(r, x)))
        }
    }

    /// @dev Returns the log256 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log256Up(uint256 x) internal pure returns (uint256 r) {
        r = log256(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(shl(3, r), 1), x))
        }
    }

    /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
    /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
    function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
        /// @solidity memory-safe-assembly
        assembly {
            mantissa := x
            if mantissa {
                if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
                    mantissa := div(mantissa, 1000000000000000000000000000000000)
                    exponent := 33
                }
                if iszero(mod(mantissa, 10000000000000000000)) {
                    mantissa := div(mantissa, 10000000000000000000)
                    exponent := add(exponent, 19)
                }
                if iszero(mod(mantissa, 1000000000000)) {
                    mantissa := div(mantissa, 1000000000000)
                    exponent := add(exponent, 12)
                }
                if iszero(mod(mantissa, 1000000)) {
                    mantissa := div(mantissa, 1000000)
                    exponent := add(exponent, 6)
                }
                if iszero(mod(mantissa, 10000)) {
                    mantissa := div(mantissa, 10000)
                    exponent := add(exponent, 4)
                }
                if iszero(mod(mantissa, 100)) {
                    mantissa := div(mantissa, 100)
                    exponent := add(exponent, 2)
                }
                if iszero(mod(mantissa, 10)) {
                    mantissa := div(mantissa, 10)
                    exponent := add(exponent, 1)
                }
            }
        }
    }

    /// @dev Convenience function for packing `x` into a smaller number using `sci`.
    /// The `mantissa` will be in bits [7..255] (the upper 249 bits).
    /// The `exponent` will be in bits [0..6] (the lower 7 bits).
    /// Use `SafeCastLib` to safely ensure that the `packed` number is small
    /// enough to fit in the desired unsigned integer type:
    /// ```
    ///     uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
    /// ```
    function packSci(uint256 x) internal pure returns (uint256 packed) {
        (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
        /// @solidity memory-safe-assembly
        assembly {
            if shr(249, x) {
                mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
                revert(0x1c, 0x04)
            }
            packed := or(shl(7, x), packed)
        }
    }

    /// @dev Convenience function for unpacking a packed number from `packSci`.
    function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
        unchecked {
            unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards zero.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = (x & y) + ((x ^ y) >> 1);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards negative infinity.
    function avg(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = (x >> 1) + (y >> 1) + (x & y & 1);
        }
    }

    /// @dev Returns the absolute value of `x`.
    function abs(int256 x) internal pure returns (uint256 z) {
        unchecked {
            z = (uint256(x) + uint256(x >> 255)) ^ uint256(x >> 255);
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, gt(x, y)), sub(y, x)), gt(x, y))
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(int256 x, int256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, sgt(x, y)), sub(y, x)), sgt(x, y))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), slt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), gt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), sgt(y, x)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(uint256 x, uint256 minValue, uint256 maxValue)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
        }
    }

    /// @dev Returns greatest common divisor of `x` and `y`.
    function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            for { z := x } y {} {
                let t := y
                y := mod(z, y)
                z := t
            }
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`,
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end)
        internal
        pure
        returns (uint256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        unchecked {
            if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin);
            return a - fullMulDiv(a - b, t - begin, end - begin);
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`.
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end)
        internal
        pure
        returns (int256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        // forgefmt: disable-next-item
        unchecked {
            if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b - a),
                uint256(t - begin), uint256(end - begin)));
            return int256(uint256(a) - fullMulDiv(uint256(a - b),
                uint256(t - begin), uint256(end - begin)));
        }
    }

    /// @dev Returns if `x` is an even number. Some people may need this.
    function isEven(uint256 x) internal pure returns (bool) {
        return x & uint256(1) == uint256(0);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RAW NUMBER OPERATIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(x, y)
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mod(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := smod(x, y)
        }
    }

    /// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
    function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := addmod(x, y, d)
        }
    }

    /// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
    function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mulmod(x, y, d)
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface IDebtToken is IERC20 {
    function mint(address to, uint256 amount) external;
    function burn(address from, uint256 amount) external;
}

Settings
{
  "evmVersion": "cancun",
  "libraries": {},
  "metadata": {
    "appendCBOR": true,
    "bytecodeHash": "ipfs",
    "useLiteralContent": false
  },
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "remappings": [
    "@openzeppelin/contracts/=node_modules/@openzeppelin/contracts/",
    "@openzeppelin/contracts-upgradeable/=node_modules/@openzeppelin/contracts-upgradeable/",
    "solady/=node_modules/solady/src/",
    "forge-std/=node_modules/forge-std/src/"
  ],
  "viaIR": true
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyInitialized","type":"error"},{"inputs":[],"name":"AmountAboveLimit","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"InvalidBorrowerCallback","type":"error"},{"inputs":[],"name":"InvalidFeeReceiver","type":"error"},{"inputs":[],"name":"NewOwnerIsZeroAddress","type":"error"},{"inputs":[],"name":"NoHandoverRequest","type":"error"},{"inputs":[],"name":"RepayNotApproved","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"inputs":[],"name":"UnsupportedToken","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldReceiver","type":"address"},{"indexed":false,"internalType":"address","name":"newReceiver","type":"address"}],"name":"NewFeeReceiver","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldFee","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newFee","type":"uint256"}],"name":"NewFlashMintFee","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldLimit","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newLimit","type":"uint256"}],"name":"NewFlashMintLimit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverCanceled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverRequested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"roles","type":"uint256"}],"name":"RolesUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"BURNER_ROLE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"CALLBACK_SUCCESS","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MINTER_ROLE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_from","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"cancelOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"completeOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeReceiver","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"flashFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC3156FlashBorrower","name":"_receiver","type":"address"},{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"flashLoan","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"flashMintFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"flashMintLimit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"grantRoles","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"hasAllRoles","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"hasAnyRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"maxFlashLoan","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"result","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"ownershipHandoverExpiresAt","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"renounceRoles","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"requestOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"revokeRoles","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"rolesOf","outputs":[{"internalType":"uint256","name":"roles","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_newFeeReceiver","type":"address"}],"name":"setFeeReceiver","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_newFlashMintFee","type":"uint256"}],"name":"setFlashMintFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_newFlashMintLimit","type":"uint256"}],"name":"setFlashMintLimit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"payable","type":"function"}]

60806040523461036a5761151e803803806100198161036e565b92833981019060408183031261036a5780516001600160401b03811161036a5782610045918301610393565b60208201519092906001600160401b03811161036a576100659201610393565b81516001600160401b03811161027d57600354600181811c91168015610360575b602082101461025f57601f81116102fd575b50602092601f821160011461029c57928192935f92610291575b50508160011b915f199060031b1c1916176003555b80516001600160401b03811161027d57600454600181811c91168015610273575b602082101461025f57601f81116101fc575b50602091601f821160011461019c579181925f92610191575b50508160011b915f199060031b1c1916176004555b6a0422ca8b0a00a425000000600555662386f26fc1000060065533638b78c6d81955335f7f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08180a3600780546001600160a01b0319163317905560405161113990816103e58239f35b015190505f80610113565b601f1982169260045f52805f20915f5b8581106101e4575083600195106101cc575b505050811b01600455610128565b01515f1960f88460031b161c191690555f80806101be565b919260206001819286850151815501940192016101ac565b60045f527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b601f830160051c81019160208410610255575b601f0160051c01905b81811061024a57506100fa565b5f815560010161023d565b9091508190610234565b634e487b7160e01b5f52602260045260245ffd5b90607f16906100e8565b634e487b7160e01b5f52604160045260245ffd5b015190505f806100b2565b601f1982169360035f52805f20915f5b8681106102e557508360019596106102cd575b505050811b016003556100c7565b01515f1960f88460031b161c191690555f80806102bf565b919260206001819286850151815501940192016102ac565b60035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b601f830160051c81019160208410610356575b601f0160051c01905b81811061034b5750610098565b5f815560010161033e565b9091508190610335565b90607f1690610086565b5f80fd5b6040519190601f01601f191682016001600160401b0381118382101761027d57604052565b81601f8201121561036a578051906001600160401b03821161027d576103c2601f8301601f191660200161036e565b928284526020838301011161036a57815f9260208093018386015e830101529056fe6080806040526004361015610012575f80fd5b5f3560e01c90816306fdde0314610c6557508063095ea7b314610bbd57806318160ddd14610ba0578063183a4f6e14610b885780631c10893f14610b285780631cd64df414610aef5780631d2a0e3d14610a9c57806323b872dd14610a645780632569296214610a1b578063282c51f314610a005780632de94807146109ce578063313ce567146109b357806340c10f19146109745780634a4ee7b11461094c5780634e3cf3cf146108f9578063514e62fc146108c157806354d1f13d1461087d5780635cffe9de1461069a578063613255ab1461067757806370a0823114610640578063715018a6146105f75780638237e538146105bd5780638da5cb5b14610591578063940a1dc01461057457806395d89b41146104705780639dc29fac14610424578063a9059cbb146103f3578063b3f00674146103cb578063cfe9f466146103ae578063d539139314610393578063d9d98ce414610342578063dd62ed3e146102f2578063efdcd97414610268578063f04e283e1461021b578063f2fde38b146101de5763fee81cf4146101a8575f80fd5b346101da5760203660031901126101da576101c1610d47565b63389a75e1600c525f52602080600c2054604051908152f35b5f80fd5b60203660031901126101da576101f2610d47565b6101fa610dea565b8060601b1561020e5761020c90611053565b005b637448fbae5f526004601cfd5b60203660031901126101da5761022f610d47565b610237610dea565b63389a75e1600c52805f526020600c20908154421161025b575f61020c9255611053565b636f5e88185f526004601cfd5b346101da5760203660031901126101da57610281610d47565b610289610dea565b6001600160a01b031680156102e3576040817f83c56083640bedf2c3720892f9b641398d6d6ae1b88e6943599240eb2c1405d7926bffffffffffffffffffffffff60a01b60075416176007558151908082526020820152a1005b633480121760e21b5f5260045ffd5b346101da5760403660031901126101da5761030b610d47565b610313610d5d565b6001600160a01b039182165f908152600160209081526040808320949093168252928352819020549051908152f35b346101da5760403660031901126101da5761035b610d47565b306001600160a01b039091160361038457602061037c6006546024356110d5565b604051908152f35b63350b944160e11b5f5260045ffd5b346101da575f3660031901126101da57602060405160018152f35b346101da575f3660031901126101da576020600554604051908152f35b346101da575f3660031901126101da576007546040516001600160a01b039091168152602090f35b346101da5760403660031901126101da5761041961040f610d47565b6024359033610e9c565b602060405160018152f35b346101da5760403660031901126101da5761043d610d47565b638b78c6d8600c52335f5260026020600c205416156104635761020c9060243590610fcf565b6382b429005f526004601cfd5b346101da575f3660031901126101da576040515f6004548060011c9060018116801561056a575b6020831081146105565782855290811561053257506001146104d4575b6104d0836104c481850382610d73565b60405191829182610d1d565b0390f35b91905060045f527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b915f905b808210610518575090915081016020016104c46104b4565b919260018160209254838588010152019101909291610500565b60ff191660208086019190915291151560051b840190910191506104c490506104b4565b634e487b7160e01b5f52602260045260245ffd5b91607f1691610497565b346101da575f3660031901126101da576020600654604051908152f35b346101da575f3660031901126101da57638b78c6d819546040516001600160a01b039091168152602090f35b346101da575f3660031901126101da5760206040517f439148f0bbc682ca079e46d6e2c2f0c1e3b820f1a291b069d8882abf8cf18dd98152f35b5f3660031901126101da5761060a610dea565b5f638b78c6d819547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a35f638b78c6d81955005b346101da5760203660031901126101da576001600160a01b03610661610d47565b165f525f602052602060405f2054604051908152f35b346101da5760203660031901126101da57602061037c610695610d47565b610dca565b346101da5760803660031901126101da576004356001600160a01b038116908190036101da576106c8610d5d565b604435916064359167ffffffffffffffff83116101da57366023840112156101da5782600401359067ffffffffffffffff82116101da5736602483860101116101da57306001600160a01b039091160361038457610724610fb6565b841161086e576020602460c461073c600654886110d5565b956107478887610f59565b8460405195869485936323e30c8b60e01b855233600486015230828601528b60448601528a606486015260a060848601528260a486015201848401375f838284010152601f801991011681010301815f865af18015610863575f90610811575b7f439148f0bbc682ca079e46d6e2c2f0c1e3b820f1a291b069d8882abf8cf18dd9915003610802576107f0836107ea6107e38561041997610da9565b3085610df9565b82610fcf565b6007546001600160a01b031690610e9c565b6329ed953d60e01b5f5260045ffd5b506020813d60201161085b575b8161082b60209383610d73565b810103126101da577f439148f0bbc682ca079e46d6e2c2f0c1e3b820f1a291b069d8882abf8cf18dd990516107a7565b3d915061081e565b6040513d5f823e3d90fd5b6306886b9160e01b5f5260045ffd5b5f3660031901126101da5763389a75e1600c52335f525f6020600c2055337ffa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c925f80a2005b346101da5760403660031901126101da576108da610d47565b638b78c6d8600c525f52602060243581600c2054161515604051908152f35b346101da5760203660031901126101da57600435610915610dea565b7f2338d887b916f31c89466d316cb6dcbee0be1c6f0b9137476ec4f76785c37dad60406005548151908152836020820152a1600555005b60403660031901126101da5761020c610963610d47565b61096b610dea565b60243590611090565b346101da5760403660031901126101da5761098d610d47565b638b78c6d8600c52335f5260016020600c205416156104635761020c9060243590610f59565b346101da575f3660031901126101da57602060405160128152f35b346101da5760203660031901126101da576109e7610d47565b638b78c6d8600c525f52602080600c2054604051908152f35b346101da575f3660031901126101da57602060405160028152f35b5f3660031901126101da5763389a75e1600c52335f526202a30042016020600c2055337fdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d5f80a2005b346101da5760603660031901126101da57610419610a80610d47565b610a88610d5d565b60443591610a97833383610df9565b610e9c565b346101da5760203660031901126101da57600435610ab8610dea565b7f0ac5487c9d9353561d210f52a197a8e83142cf5a3ea47de2390041fdbb51335660406006548151908152836020820152a1600655005b346101da5760403660031901126101da576020610b0a610d47565b60243590638b78c6d8600c525f528082600c20541614604051908152f35b60403660031901126101da57610b3c610d47565b610b44610dea565b638b78c6d8600c525f526020600c20602435815417809155600c5160601c7f715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe265f80a3005b60203660031901126101da5761020c60043533611090565b346101da575f3660031901126101da576020600254604051908152f35b346101da5760403660031901126101da57610bd6610d47565b602435903315610c52576001600160a01b0316908115610c3f57335f52600160205260405f20825f526020528060405f20556040519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203392a3602060405160018152f35b634a1406b160e11b5f525f60045260245ffd5b63e602df0560e01b5f525f60045260245ffd5b346101da575f3660031901126101da575f6003548060011c90600181168015610d13575b602083108114610556578285529081156105325750600114610cb5576104d0836104c481850382610d73565b91905060035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b915f905b808210610cf9575090915081016020016104c46104b4565b919260018160209254838588010152019101909291610ce1565b91607f1691610c89565b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b600435906001600160a01b03821682036101da57565b602435906001600160a01b03821682036101da57565b90601f8019910116810190811067ffffffffffffffff821117610d9557604052565b634e487b7160e01b5f52604160045260245ffd5b91908201809211610db657565b634e487b7160e01b5f52601160045260245ffd5b306001600160a01b0390911603610de657610de3610fb6565b90565b5f90565b638b78c6d81954330361046357565b6001600160a01b039081165f818152600160209081526040808320948616835293905291909120549291905f198410610e33575b50505050565b828410610e79578015610c52576001600160a01b03821615610c3f575f52600160205260405f209060018060a01b03165f5260205260405f20910390555f808080610e2d565b508290637dc7a0d960e11b5f5260018060a01b031660045260245260445260645ffd5b6001600160a01b0316908115610f46576001600160a01b0316918215610f3357815f525f60205260405f2054818110610f1a57817fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef92602092855f525f84520360405f2055845f525f825260405f20818154019055604051908152a3565b8263391434e360e21b5f5260045260245260445260645ffd5b63ec442f0560e01b5f525f60045260245ffd5b634b637e8f60e11b5f525f60045260245ffd5b6001600160a01b0316908115610f33577fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef602082610f9a5f94600254610da9565b60025584845283825260408420818154019055604051908152a3565b600254600554901981811115610fca575090565b905090565b9091906001600160a01b03168015610f4657805f525f60205260405f2054838110611039576020845f94957fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef938587528684520360408620558060025403600255604051908152a3565b915063391434e360e21b5f5260045260245260445260645ffd5b60018060a01b031680638b78c6d819547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a3638b78c6d81955565b638b78c6d8600c525f526020600c2090815490811618809155600c5160601c7f715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe265f80a3565b90805f190482116110f0575b670de0b6b3a764000091020490565b80156110e15763bac65e5b5f526004601cfdfea2646970667358221220a06d9f39b4b186ad6a90c5348b8191cee12d13003d267dfdf679e385c4c5c46964736f6c634300081c003300000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000080000000000000000000000000000000000000000000000000000000000000000b4879706572737461626c6500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000035553480000000000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x6080806040526004361015610012575f80fd5b5f3560e01c90816306fdde0314610c6557508063095ea7b314610bbd57806318160ddd14610ba0578063183a4f6e14610b885780631c10893f14610b285780631cd64df414610aef5780631d2a0e3d14610a9c57806323b872dd14610a645780632569296214610a1b578063282c51f314610a005780632de94807146109ce578063313ce567146109b357806340c10f19146109745780634a4ee7b11461094c5780634e3cf3cf146108f9578063514e62fc146108c157806354d1f13d1461087d5780635cffe9de1461069a578063613255ab1461067757806370a0823114610640578063715018a6146105f75780638237e538146105bd5780638da5cb5b14610591578063940a1dc01461057457806395d89b41146104705780639dc29fac14610424578063a9059cbb146103f3578063b3f00674146103cb578063cfe9f466146103ae578063d539139314610393578063d9d98ce414610342578063dd62ed3e146102f2578063efdcd97414610268578063f04e283e1461021b578063f2fde38b146101de5763fee81cf4146101a8575f80fd5b346101da5760203660031901126101da576101c1610d47565b63389a75e1600c525f52602080600c2054604051908152f35b5f80fd5b60203660031901126101da576101f2610d47565b6101fa610dea565b8060601b1561020e5761020c90611053565b005b637448fbae5f526004601cfd5b60203660031901126101da5761022f610d47565b610237610dea565b63389a75e1600c52805f526020600c20908154421161025b575f61020c9255611053565b636f5e88185f526004601cfd5b346101da5760203660031901126101da57610281610d47565b610289610dea565b6001600160a01b031680156102e3576040817f83c56083640bedf2c3720892f9b641398d6d6ae1b88e6943599240eb2c1405d7926bffffffffffffffffffffffff60a01b60075416176007558151908082526020820152a1005b633480121760e21b5f5260045ffd5b346101da5760403660031901126101da5761030b610d47565b610313610d5d565b6001600160a01b039182165f908152600160209081526040808320949093168252928352819020549051908152f35b346101da5760403660031901126101da5761035b610d47565b306001600160a01b039091160361038457602061037c6006546024356110d5565b604051908152f35b63350b944160e11b5f5260045ffd5b346101da575f3660031901126101da57602060405160018152f35b346101da575f3660031901126101da576020600554604051908152f35b346101da575f3660031901126101da576007546040516001600160a01b039091168152602090f35b346101da5760403660031901126101da5761041961040f610d47565b6024359033610e9c565b602060405160018152f35b346101da5760403660031901126101da5761043d610d47565b638b78c6d8600c52335f5260026020600c205416156104635761020c9060243590610fcf565b6382b429005f526004601cfd5b346101da575f3660031901126101da576040515f6004548060011c9060018116801561056a575b6020831081146105565782855290811561053257506001146104d4575b6104d0836104c481850382610d73565b60405191829182610d1d565b0390f35b91905060045f527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b915f905b808210610518575090915081016020016104c46104b4565b919260018160209254838588010152019101909291610500565b60ff191660208086019190915291151560051b840190910191506104c490506104b4565b634e487b7160e01b5f52602260045260245ffd5b91607f1691610497565b346101da575f3660031901126101da576020600654604051908152f35b346101da575f3660031901126101da57638b78c6d819546040516001600160a01b039091168152602090f35b346101da575f3660031901126101da5760206040517f439148f0bbc682ca079e46d6e2c2f0c1e3b820f1a291b069d8882abf8cf18dd98152f35b5f3660031901126101da5761060a610dea565b5f638b78c6d819547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a35f638b78c6d81955005b346101da5760203660031901126101da576001600160a01b03610661610d47565b165f525f602052602060405f2054604051908152f35b346101da5760203660031901126101da57602061037c610695610d47565b610dca565b346101da5760803660031901126101da576004356001600160a01b038116908190036101da576106c8610d5d565b604435916064359167ffffffffffffffff83116101da57366023840112156101da5782600401359067ffffffffffffffff82116101da5736602483860101116101da57306001600160a01b039091160361038457610724610fb6565b841161086e576020602460c461073c600654886110d5565b956107478887610f59565b8460405195869485936323e30c8b60e01b855233600486015230828601528b60448601528a606486015260a060848601528260a486015201848401375f838284010152601f801991011681010301815f865af18015610863575f90610811575b7f439148f0bbc682ca079e46d6e2c2f0c1e3b820f1a291b069d8882abf8cf18dd9915003610802576107f0836107ea6107e38561041997610da9565b3085610df9565b82610fcf565b6007546001600160a01b031690610e9c565b6329ed953d60e01b5f5260045ffd5b506020813d60201161085b575b8161082b60209383610d73565b810103126101da577f439148f0bbc682ca079e46d6e2c2f0c1e3b820f1a291b069d8882abf8cf18dd990516107a7565b3d915061081e565b6040513d5f823e3d90fd5b6306886b9160e01b5f5260045ffd5b5f3660031901126101da5763389a75e1600c52335f525f6020600c2055337ffa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c925f80a2005b346101da5760403660031901126101da576108da610d47565b638b78c6d8600c525f52602060243581600c2054161515604051908152f35b346101da5760203660031901126101da57600435610915610dea565b7f2338d887b916f31c89466d316cb6dcbee0be1c6f0b9137476ec4f76785c37dad60406005548151908152836020820152a1600555005b60403660031901126101da5761020c610963610d47565b61096b610dea565b60243590611090565b346101da5760403660031901126101da5761098d610d47565b638b78c6d8600c52335f5260016020600c205416156104635761020c9060243590610f59565b346101da575f3660031901126101da57602060405160128152f35b346101da5760203660031901126101da576109e7610d47565b638b78c6d8600c525f52602080600c2054604051908152f35b346101da575f3660031901126101da57602060405160028152f35b5f3660031901126101da5763389a75e1600c52335f526202a30042016020600c2055337fdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d5f80a2005b346101da5760603660031901126101da57610419610a80610d47565b610a88610d5d565b60443591610a97833383610df9565b610e9c565b346101da5760203660031901126101da57600435610ab8610dea565b7f0ac5487c9d9353561d210f52a197a8e83142cf5a3ea47de2390041fdbb51335660406006548151908152836020820152a1600655005b346101da5760403660031901126101da576020610b0a610d47565b60243590638b78c6d8600c525f528082600c20541614604051908152f35b60403660031901126101da57610b3c610d47565b610b44610dea565b638b78c6d8600c525f526020600c20602435815417809155600c5160601c7f715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe265f80a3005b60203660031901126101da5761020c60043533611090565b346101da575f3660031901126101da576020600254604051908152f35b346101da5760403660031901126101da57610bd6610d47565b602435903315610c52576001600160a01b0316908115610c3f57335f52600160205260405f20825f526020528060405f20556040519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203392a3602060405160018152f35b634a1406b160e11b5f525f60045260245ffd5b63e602df0560e01b5f525f60045260245ffd5b346101da575f3660031901126101da575f6003548060011c90600181168015610d13575b602083108114610556578285529081156105325750600114610cb5576104d0836104c481850382610d73565b91905060035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b915f905b808210610cf9575090915081016020016104c46104b4565b919260018160209254838588010152019101909291610ce1565b91607f1691610c89565b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b600435906001600160a01b03821682036101da57565b602435906001600160a01b03821682036101da57565b90601f8019910116810190811067ffffffffffffffff821117610d9557604052565b634e487b7160e01b5f52604160045260245ffd5b91908201809211610db657565b634e487b7160e01b5f52601160045260245ffd5b306001600160a01b0390911603610de657610de3610fb6565b90565b5f90565b638b78c6d81954330361046357565b6001600160a01b039081165f818152600160209081526040808320948616835293905291909120549291905f198410610e33575b50505050565b828410610e79578015610c52576001600160a01b03821615610c3f575f52600160205260405f209060018060a01b03165f5260205260405f20910390555f808080610e2d565b508290637dc7a0d960e11b5f5260018060a01b031660045260245260445260645ffd5b6001600160a01b0316908115610f46576001600160a01b0316918215610f3357815f525f60205260405f2054818110610f1a57817fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef92602092855f525f84520360405f2055845f525f825260405f20818154019055604051908152a3565b8263391434e360e21b5f5260045260245260445260645ffd5b63ec442f0560e01b5f525f60045260245ffd5b634b637e8f60e11b5f525f60045260245ffd5b6001600160a01b0316908115610f33577fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef602082610f9a5f94600254610da9565b60025584845283825260408420818154019055604051908152a3565b600254600554901981811115610fca575090565b905090565b9091906001600160a01b03168015610f4657805f525f60205260405f2054838110611039576020845f94957fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef938587528684520360408620558060025403600255604051908152a3565b915063391434e360e21b5f5260045260245260445260645ffd5b60018060a01b031680638b78c6d819547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a3638b78c6d81955565b638b78c6d8600c525f526020600c2090815490811618809155600c5160601c7f715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe265f80a3565b90805f190482116110f0575b670de0b6b3a764000091020490565b80156110e15763bac65e5b5f526004601cfdfea2646970667358221220a06d9f39b4b186ad6a90c5348b8191cee12d13003d267dfdf679e385c4c5c46964736f6c634300081c0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000080000000000000000000000000000000000000000000000000000000000000000b4879706572737461626c6500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000035553480000000000000000000000000000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : _name (string): Hyperstable
Arg [1] : _symbol (string): USH

-----Encoded View---------------
6 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000040
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000080
Arg [2] : 000000000000000000000000000000000000000000000000000000000000000b
Arg [3] : 4879706572737461626c65000000000000000000000000000000000000000000
Arg [4] : 0000000000000000000000000000000000000000000000000000000000000003
Arg [5] : 5553480000000000000000000000000000000000000000000000000000000000


[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.